Art. I.-The Alternate Curvent Transformer.

By THOMAS R. LYLE, M.A.,

Professor of Natural Philosophy in the University of Melbourne.
(W2th Plates I.-V.).
[Read 9th June, 1904].
The following paper is divided into three Sections.
In Section I. the mathematical theory of the closed-circuit transformer for sinusoidal wave forms is developed, and reduced to a form suitable for practical application.

In Section II. is given an example of the application of the practical formulae obtained in Section I. to the design of transformers to operate different classes of load.

Section III. contains analytical investigations relating to magnetic leakage in transformers, to what are called the transformer numerics, and to the determination of the most efficient shapes of transformers of different types as well as a general solution of the transformer problem in which no assumptions with regard to leakage are made.

Section I.

1. It is well known that when an alternate magneto-motive force (M.M.F.) operates in a magnetic circuit (laminated), the M.M.F. per unit length (H, say) and the average flux density (B, say) can be expressed as follows :-
$\mathrm{H}=\mathrm{H}_{1}\left[\operatorname{Sin} z t t+h_{3} \operatorname{Sin} 3\left(z v t-y_{3}\right)+d \mathrm{c}.\right]$
$\mathrm{B}=\mathrm{B}_{1}\left[\operatorname{Sin}(w t-\delta)+b_{3} \operatorname{Sin} 3\left(w t-\beta_{3}\right)+\& \mathrm{c}.\right]$
where the period is $2 \pi / v v$; and that the iron losses per cycle, per unit volume, due to hysteresis and eddy currents are equal in this case to
$\mathrm{H}_{4} \mathrm{~B}_{1}\left[\operatorname{Sin} \delta+3 h_{3} b_{3} \operatorname{Sin} 3\left(\beta_{3}-\gamma_{3}\right)+\& \mathrm{cc}.\right]$
If $\mathrm{B}_{1}=\mu_{0} \mathrm{H}_{1}$ then μ_{0} and δ will depend on B_{1}, v, and the wave form of H , as well as on the quality of the iron and the thickness of the laminae.

In some experiments on goorl transformer iron of thickness . 04 cm . (q.p.), I have found by means of my wave tracer ${ }^{1}$ that μ_{0} and δ are given in terms of B_{1} for periods .03 and .06 sec . by the curves shown in Fig. I., where the curves giving the corresponding iron losses are also shown.

In these experiments the wave forms of H were peaked, that is, the value of H at the crest was greater than the amplitude H_{1} of its first harmonic. When the wave form of H is flat-topped, both μ_{0} and δ are smaller for the same values of B_{1} and π.

The values of B at the crests of the flux waves, corresponding to different values of B_{1} the first harmonic, for the period . 03 sec. are also given in Fig. 1, by the upper row of figures along the axis of x.

When the third and higher harmonics of H and B are neglected, the above equations take the simple forms,
$\frac{\text { M.M.F. }}{\text { Length }}=$ HSinzut

$$
\begin{aligned}
& \frac{\text { Flux }}{\text { Section }}=\operatorname{BSin}(w t-\delta) \\
& \mathrm{B}=\mu \mathrm{H} \\
& \frac{\text { Iron losses per cycle }}{\text { Volume of iron }}=\frac{\mathrm{HB}}{4} \operatorname{Sin} \delta \\
& \frac{\text { Iron losses per second }}{\text { Volume of iron }}=\frac{w \mathrm{~B}^{2}}{8 \pi \mu} \operatorname{Sin} \delta
\end{aligned}
$$

which relations will be used in the following approximate theory of the transformer.

Notation.-The different periodic quantities considered will in the text be represented by letters such as $\overline{\mathrm{E}_{1}}, \overline{\mathrm{C}_{1}}, \overline{\mathrm{E}_{2}}, \overline{\mathrm{C}_{2}}$, with bars over them when the conception of both their amplitudes and phases is involved, while the amplitudes of these quantities will be represented by the same letters without the bar. Letters with the number 1 subscribed will refer to the primary, and with the number 2 subscribed to the secondary circuit.

The period of the alternations will be $2 \pi / z e$.
2. On the vector diagram, Fig. 2, let OR represent in amplitude and phase the resultant flux $\overline{\mathrm{F}}$ looped on both the primary and secondary coils of a transformer.

This flux is produced by the ampere-turns

$$
n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2} \text { (a vector sum) }
$$

so that Amp. $\overline{\mathrm{F}}$ or $\mathrm{F}=$ oamp. $\left(\overline{n_{1}} \overline{\mathrm{C}}_{1}+n_{2} \mathrm{C}_{2}\right)$
where $\sigma=4 \pi \times$ permeance of the magnetic circuit.
$=4 \pi \mu \frac{\text { Section of iron }}{\text { Nlean length of iron }}$, for a closed circuit,
and $\overrightarrow{\mathrm{F}}$ is behind ${\overline{n_{1}} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}^{2}$ in phase by an angle δ. (See ş 1).
[It will be shown that, throughout the range of operation of a transformer, when the primary volts and frequency are fixed, F is very nearly constant, so that δ and μ will he very nearly constant. On referring to Fig. 1, it will be seen that δ is fairly constant in any case in the neighbourhood of the flux densities generally used in transformers, and though, at the same densities μ is changing rapidly, we shall not, on account of the approximate constancy of F , introduce much error by assuming both δ and μ constant during the operation of the transformer.]

Hence from O draw OM, ahead of OR by the angle $\delta=$ ROM, and in length equal to F / σ.

OM fully represents $n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}$.
In addition to the magnetic lines forming the main flux $\overline{\mathrm{F}}$ and looped on both circuits of a transformer, there are others, the leakage lines, which are only partially looped on the circuits and whose action must be taken account of.

In Section III. of this paper it will be shown that, after the transformer is somewhat loaded, the effect of these leakage lines on its operation is the same as would be produced by two fluxes; one, the primary leakage flux, in phase with the primary current, and supposed to consist of lines that are looped on the primary circuit and miss the secondary, and the other, the secondary leakage Hux, in phase with the secondary current and supposed to consist of lines that are looped on the secondary and that miss the primary circuit.

Let these two fluxes be specified by $x_{1} \sigma n_{1} \overline{\mathrm{C}_{1}}$ and $x_{2} \sigma n_{2} \overline{\mathrm{C}_{2}}$ where x_{1} and x_{2} are what we will call the leakage coefficients of the two circuits, and $\sigma=4 \pi \times$ permeance of the magnetic circuit as before.
3. The e.m.f. in the secondary coil being equal to
$-n_{2} \frac{d \overline{\mathrm{~F}}}{d t}$
is represented by the vector RS equal in length to $2 v n_{2} \mathrm{~F}$ and behind $\overline{\mathrm{F}}$ in phase by a right angle.

For the present we will assume that the secondary current $\overline{\mathrm{C}_{2}}$ lags behind the internal secondary e.m.f. ${\overline{\mathrm{E}_{2}^{\prime}} \text { or RS ly an angle }}^{\prime}$ ϕ^{\prime}. This angle will depend on the load and its power factor, as well as on the secondary magnetic leakage, and will subsequently be expressed as a function of these quantities.

From R draw $R P$ making the angle $S R P=\phi^{\prime}$ and drop $S P$ perpendicular to $R P$; then the vector $R P$ fully represents $R_{2} \mathrm{C}_{2}$, where R_{3} is the total resistance or its equivalent in the secondary circuit.
4. From M draw MN parallel to RP and equal to $n_{2} \mathrm{C}_{2}$, that is $\mathrm{MN}=n_{2} \mathrm{C}_{2}=n_{2} \frac{\mathrm{RP}}{\mathrm{R}_{2}}=n_{2} \frac{\tau u n_{2} \mathrm{~F} \operatorname{Cos} \phi^{\prime}}{\mathrm{R}_{2}}=\theta^{\prime} \operatorname{Cos} \phi^{\prime} \frac{\mathrm{F}}{\sigma}$
where $\theta^{\prime}=\frac{\pi n_{2}{ }^{2} \sigma}{\mathrm{R}_{2}}$,
then the vector NMI represents $\overline{n_{2} \mathrm{C}_{2}}$, and as OM represents $\overline{n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}$, we have $\overline{n_{1} \mathrm{C}_{1}}$ fully represented by the vector ON.

As the angle $\mathrm{OMN}=\frac{\pi}{2}+\delta+\phi^{\prime}$ and $\mathrm{OM}=\mathrm{F} / \sigma$ we find that

$$
\text { ON or } n_{1} \mathrm{C}_{1}=\Delta_{\sigma^{\prime}}^{\prime,} \mathrm{F}^{\prime}=\frac{\Delta^{\prime}}{\theta^{\prime} \operatorname{Cos} \phi^{\prime}} n_{2} \mathrm{C}_{2}
$$

where $\Delta^{\prime 2}=1+2 \theta^{\prime} \operatorname{Cos} \phi^{\prime} \operatorname{Sin}\left(\delta+\phi^{\prime}\right)+\theta^{\prime 2} \operatorname{Cos}^{2} \phi^{\prime}$.
If the angle MON be called χ, we find, by projecting the sides of the triangle OMN on OR and on a line perpendicular to OR, the relations

$$
\begin{aligned}
& \Delta^{\prime} \operatorname{Cos}(\chi+\delta)=\operatorname{Cos} \delta+\theta^{\prime} \operatorname{Cos} \phi^{\prime} \operatorname{Sin} \phi^{\prime} \\
& \Delta^{\prime} \operatorname{Sin}(\chi+\delta)=\operatorname{Sin} \delta+\theta^{\prime} \operatorname{Cos}^{2} \phi^{\prime} \\
& \text { which will be useful. }
\end{aligned}
$$

5. From O along $O N$ cut off a length $O B$ that will represent $r_{1} \mathrm{C}_{1}^{-}$, where r_{1} is the resistance of the primary coil ; OB will represent therefore the effective e.m.f. that produces current in the primary coil, and will be the vector sum of (a) the impressed e.m.f. E_{1}^{-}, (b) the e.m.f.

$$
-n_{1} \frac{\overline{d \mathrm{~F}}}{d t}
$$

due to variation of the main flux $\overline{\mathrm{F}}$, and (c) the e.m.f.
$-n_{1} \frac{d}{d t}\left(x_{1} \sigma n_{1} \overline{\mathrm{C}_{1}}\right)$
due to variation of the primary leakage flux.
Hence from B draw BC perpendicular to ON and equal to
$w x_{1} n_{1}{ }^{2} \sigma \mathrm{C}_{1}=x_{1} \tau_{1} r_{1} \mathrm{C}_{1}$ say,
where $\tau_{1}=\frac{z v n_{1}^{2} \sigma}{r_{1}}$
CB will fully represent (c).
From C draw CE perpendicular to $O R$ and equal to $z e n_{1} \mathrm{~F}$, EC will fully represent (b).

Join OE. OE will fully represent E_{1}, the e.m.f. impressed on the primary of the transformer.
6. At this place attention may be drawn to the importance that will be attached in what follows to the quantities τ_{1}, τ_{2}, and θ^{\prime}.

As τ_{1} which we will call the numeric of the primary circuit of the transformer or, shortly, the primary mumeric, is equal to

$$
2 \frac{n_{1}^{2} \sigma}{r_{1}}
$$

and $\frac{n_{1}{ }^{2}}{r_{1}}=\frac{n_{1}{ }^{2}}{\rho n_{1} l_{1}}=\frac{n_{1} a_{1}}{\rho l_{1}}$
where $a_{1}=$ sectional area of primary wire
$l_{1}=$ mean length of primary turns
$\rho=$ specific resistance of copper
also $\sigma=4 \pi$. permeance of magnetic circuit. We see that τ_{1} is equal to $4 \pi w$ into the conductance of the primary zeires, considered as one turn or belt, into the permeance of the magnetic circuit.
τ_{2} is a similar constant for the secondary circuit, and will generally be nearly equal to τ_{1}; we will call it the secondary mumeric. In what follows the ratio of τ_{1} to τ_{2} will where necessary be denoted by f so that

$$
f=\frac{\tau_{1}}{\tau_{2}}=\frac{\frac{n_{1}^{2}}{r_{1}}}{\frac{n_{2}^{2}}{r_{2}}}=\frac{\frac{n_{1} a_{1}}{l_{1}}}{\frac{n_{2} l_{2}}{l_{3}}}
$$

On the other hand θ^{\prime} is a variable, varying with the load on the transformer, and for a given load-power-factor approximately as the load.
R_{2} being the total resistance or its equivalent in the secondary circuit

$$
\theta^{\prime}=\frac{w n_{2}{ }^{2} \sigma}{\mathrm{R}_{2}}=\frac{r_{2} \tau_{3}}{\mathrm{R}_{2}}
$$

It is worth noting that τ_{1}, τ_{2}, and θ^{\prime} are of zero dimensions.
7. Returning to the diagram Fig. 2, if we call the angle EOB α, so that $\operatorname{Cos} \alpha$ is the power factor of the transformer, we find by projecting the figure $O E C B$ on ON and on a line perpendicular to ON, that

$$
\begin{aligned}
\mathrm{E}_{1} \operatorname{Cos} \alpha & =r_{1} \mathrm{C}_{1}+w n_{1} \mathrm{FSin}(\delta+\chi)=r_{1} \mathrm{C}_{1}\left[1+\frac{\tau_{1}}{\Delta^{\prime}} \operatorname{Sin}(\delta+\chi)\right] \\
& =r_{1} \mathrm{C}_{1}\left[1+\frac{\tau_{1}}{\Delta^{\prime 2}}\left(\operatorname{Sin} \delta+\theta^{\prime} \operatorname{Cos}^{2} \phi^{\prime}\right)\right]
\end{aligned}
$$

making use of the relations in $\$ 4$ and 5 .

$$
\begin{aligned}
\mathrm{E}_{1} \operatorname{Sin} \alpha & =x_{1} \tau_{1} r_{1} \mathrm{C}_{1}+\psi^{\prime} n_{1} \mathrm{~F} \operatorname{Cos}(\delta+\chi)=r_{1} \mathrm{C}_{1}\left[x_{1} \tau_{1}+\frac{\tau_{1}}{\Delta^{\prime}} \operatorname{Cos}(\delta+\chi)\right] \\
& =r_{1} \mathrm{C}_{1}\left[x_{1} \tau_{1}+\frac{\tau_{1}}{\Delta^{\prime 2}}\left[\operatorname{Cos} \delta+\theta^{\prime} \operatorname{Cos} \phi^{\prime} \operatorname{Sin} \phi^{\prime}\right)\right]
\end{aligned}
$$

whence, squaring and adding

$$
\begin{aligned}
& \mathrm{E}_{1}^{2}={r_{1}^{2} \mathrm{C}_{1}^{2}\left\{1+x_{1}^{3} \tau_{1}^{2}+\frac{\tau_{1}^{2}}{\Delta^{2}}+\frac{2 \tau_{1}}{\Delta^{\prime}}\left[\operatorname{Sin}(\delta+\chi)+x_{1} \tau_{1} \operatorname{Cos}(\delta+\chi)\right]\right\}}_{\text {or } \mathrm{C}_{1}}=\frac{\mathrm{E}_{1}}{r_{1} \tau_{1}} \Delta^{\prime}
\end{aligned}
$$

where $\mathrm{D}^{\prime 2}=1+2 x_{1} \operatorname{Cos} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{1}}+2 \theta^{\prime} \operatorname{Cos} \phi^{\prime}\left(x_{1} \operatorname{Sin} \phi^{\prime}+\frac{\operatorname{Cos} \phi^{\prime}}{\tau_{1}}\right)+$

$$
\Delta^{\prime 2}\left(x_{1}^{2}+\frac{1}{\tau_{1}^{2}}\right)
$$

Dividing $\mathrm{E}_{1} \operatorname{Sin} \alpha$ by $\mathrm{E}_{1} \operatorname{Cos} \alpha$

$$
\tan \alpha=\frac{\operatorname{Cos} \delta+\theta^{\prime} \operatorname{Cos} \phi^{\prime} \operatorname{Sin} \phi^{\prime}+x_{1} \Delta^{\prime 2}}{\operatorname{Sin} \delta+\theta^{\prime} \operatorname{Cos}^{2} \phi^{\prime}+{ }_{\tau_{1}}^{1} \Delta^{\prime 2}}
$$

The above relations enable us to determine practically τ_{1} and δ for any closed-circuit transformer. For on open secondary $\theta^{\prime}=0$.

$$
\Delta^{\prime}=1 . \quad D^{\prime}=1+x_{1} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{1}}=1(q \cdot p .),
$$

as it will be shown later on that x_{1} is always a small fraction and τ_{1} a large number for a transformer of the type treated in this section. Hence if C_{0} be the primary current on open secondary

$$
\tau_{1}=\frac{\mathbf{E}_{1}}{r_{1} \mathrm{C}_{0}\left(1+x_{1} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{1}}\right)}=\frac{\mathbf{E}_{1}}{r_{1} \mathrm{C}_{0}}
$$

[The same is obvious otherwise, for

$$
r_{1} \tau_{1}=w \mu_{1}{ }^{2} \sigma=w \mathrm{~L}_{1}
$$

where L_{1} is the inductance of the primary on open secondary].
Also on open secondary as $\theta^{\prime}=0$, dc.

$$
\tan \alpha=\frac{\operatorname{Cos} \delta+x_{1}}{\operatorname{Sin} \delta+\frac{1}{\tau_{1}}}=\operatorname{Cot} \delta \text { (q.p.) }
$$

or $\operatorname{Cos} \alpha=\operatorname{Sin} \delta$
that is, the power factor of a closed circuit transformer on open secondary is equal to the sine of the angle of magnetic retardation of its iron for the period aud flux density used.
8. In the diagram Fig. 2, we see that $\overline{\mathrm{C}}_{2}$ is behind $\overline{\mathrm{C}}_{1}$ in phase by an angle $\pi-\beta$ where $\beta=$ ONM.

Projecting ON on NM and on a line perpendicular to NM, we find that
$\Delta^{\prime} \operatorname{Cos} \beta=\operatorname{Sin}\left(\delta+\phi^{\prime}\right)+\theta^{\prime} \operatorname{Cos} \phi^{\prime}$
$\Delta^{\prime} \operatorname{Sin} \beta=\operatorname{Cos}\left(\delta+\phi^{\prime}\right)$.
Also if C_{2} be behind E_{1} in phase by an angle $\pi+\lambda$ we see that $\lambda=\alpha-\beta$.
9. The amplitudes of the different quantities can now be written down in terms of E_{1} as follows:-

$$
\begin{aligned}
& \mathrm{C}_{1}=\frac{\mathrm{E}_{1}}{r_{1} \tau_{1}} \frac{\Delta^{\prime}}{\mathrm{D}^{\prime}}, \\
& w n_{1} \mathrm{~F}=\frac{\mathrm{E}_{1}}{\mathrm{D}_{1}}
\end{aligned}
$$

$\operatorname{Amp}\left(n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}\right)=\frac{\mathrm{F}}{\sigma}=\frac{n_{1} \mathrm{C}_{1}}{\Delta^{\prime}}=\frac{n_{2} \mathrm{C}_{2}}{\theta^{\prime} \operatorname{Cos} \phi^{\prime}}=\frac{\mathrm{E}_{1}}{r_{1} \tau_{1}} \frac{n_{1}}{\mathrm{D}^{\prime}}$
and if E_{2}^{\prime} be the total e.m.f. generated in the secondary,
$\mathrm{E}_{2}^{\prime}=z \ell^{\prime} n_{2} \mathrm{~F}=\frac{n_{2}}{n_{1}} \frac{\mathrm{E}_{1}}{\mathrm{D}^{\prime \prime}}$
The total power P_{2}^{\prime} developed in the secondary
$=\frac{1}{2} \mathrm{E}_{2}^{\prime} \mathrm{C}_{2} \operatorname{Cos} \phi^{\prime}=\frac{1}{2} r_{1} \mathrm{C}_{1}{ }^{2} \frac{\theta^{\prime} \tau_{1} \operatorname{Cos}^{2} \phi^{\prime}}{\Delta^{\prime 2}}=\frac{\mathrm{E}_{1}{ }^{2}}{2 r_{1} \tau_{1}} \frac{\theta^{\prime} \operatorname{Cos}^{2} \phi^{\prime}}{\mathrm{D}^{\prime 2}}$.
10. If $\overline{\mathrm{E}}_{2}$ be the terminal e.m.f. of the secondary and $\operatorname{Cos} \phi$ the power factor of the load, the relations connecting these
quantites with E_{2}^{\prime}, Cos ϕ^{\prime}, etc., can now be obtained as follows:-

From SP Fig. 2 cut off ST so that

$$
\mathrm{ST}=z x_{x_{2}} n_{2}^{2} \sigma \mathrm{C}_{2}=x_{2} \theta^{\prime} \mathrm{R}_{2} \mathrm{C}_{2}
$$

then ST represents $-n_{2} \frac{d}{d t}\left(x_{2} \sigma n_{2} \overline{\mathrm{C}_{2}}\right)$
that is, the e.m.f. in the secondary due to variation of its leakage flux.

From RP cut off $\mathrm{RQ}==r_{2} \mathrm{C}_{2}$, then RQ represents the ohmic drop in the secondary.

Subtracting the vectors ST and RQ from RS (which represents the total e.m.f. in the secondary), we get QT, which fully represents $\overline{\mathrm{E}}_{2}$, the terminal e.m.f., and the angle $\mathrm{PQT}=\phi$ where $\operatorname{Cos} \phi$ is the power factor of the load.

If R be the external resistance or its equivalent in the secondary circuit
so that $R=R_{2}-r_{2}$, and if

$$
\theta=\frac{z u n_{2}^{2} \sigma}{\mathrm{R}}
$$

then as $\quad \theta^{\prime}=\frac{w n_{2}{ }^{2} \sigma}{\mathrm{R}_{2}}$ and $\tau_{2}=\frac{z u n_{2}{ }^{2} \sigma}{r_{2}}$
we have $\quad \frac{1}{\theta^{\prime}}=\frac{1}{\theta}+\frac{1}{\tau_{2}}$.

$$
\begin{align*}
& \text { Since } \frac{\mathrm{QP}}{\mathrm{RP}}=\frac{\mathrm{R}_{2}-r_{2}}{\mathrm{R}_{2}}=\frac{\mathrm{R}}{\mathrm{R}_{2}}=\frac{\theta^{\prime}}{\theta} \tag{I.}\\
& \mathrm{E}_{2} \theta \operatorname{Cos} \phi=\mathrm{E}_{2}^{\prime} \theta^{\prime} \operatorname{Cos} \phi^{\prime} \\
& \text { or } \quad \mathrm{E}_{2}=\theta^{\prime} \operatorname{Cos} \phi^{\prime} \\
& \theta \operatorname{Cos} \phi n_{2} \\
& \mathrm{E}_{1} \\
& \mathrm{D}^{\prime}
\end{align*}
$$

$$
\begin{align*}
& \text { Again since } \mathrm{PS}=\mathrm{PT}+\mathrm{TS} \\
& \mathrm{R}_{2} \mathrm{C}_{2} \tan \phi^{\prime}=\mathrm{RC}_{2} \tan \phi+z n_{2}^{2} \sigma x_{2} \mathrm{C}_{2} \\
& \frac{\tan \phi^{\prime}}{\theta^{\prime}}=\frac{\tan \phi}{\theta}+x_{2} . \tag{II.}
\end{align*}
$$

By means of the relations I. and II. we can now transform the formulæ already obtained in θ^{\prime} and ϕ^{\prime} to others in θ and ϕ.
11. Before doing so, however, it will be well to direct attention to the possible values of $\tau_{1}, \tau_{2}, \theta, \theta^{\prime}, x_{1}, x_{2}$, and $\operatorname{Sin} \delta$, as when these are considered the formulæ admit of considerable simplification through dropping terms of negligible value.

The constants τ_{1} and τ_{2} for a transformer of 1 K .W. capacity at 50 periods would in no case be less than 1200 , and it will be shown in Section III. (§55), that for similar transformers they are proportional to the square root of the output, and to the square root of the frequency.

The greatest practical value of θ or θ^{\prime} for any transformer will not be much above

```
\(\sqrt{\tau \operatorname{Sin} \delta}\) where \(\tau\) is the mean of \(\tau\), and \(\tau_{3}\)
``` unless in case of excessive overload.

The leakage coeflicients \(x_{1}\) and \(x_{2}\) should each be less than .002 ; and in transformers whose coils are wound in sections and interleaved they become very much smaller.
\(\delta\), the angle of magnetic retardation, will lie between \(40^{\circ}\) and \(55^{\circ}\), its value depending on the quality of the iron, thickness of lamine, flux density and frequency; hence Sind will have a value between 65 and .8 .
[The formule given in this paper are only roughly approximate when applied to open-circuit transformers, as will be explained further on.

For them the \(\tau\) constants are roughly \(.05-.04\) times the constants of closed-circuit transformers of the same capacity while \(\operatorname{Sin} \delta=.15-.08\).]
12. Since \(\frac{1}{\theta^{\prime 2} \operatorname{Cos}^{2} \phi^{\prime}}=\frac{1}{\theta^{\prime 2}}+\frac{\tan ^{2} \phi^{\prime}}{\theta^{\prime 2}}\)
we find on substituting for \(\frac{1}{\theta^{\prime}}\) and \(\frac{\tan \phi^{\prime}}{\theta^{\prime}}\) from equations I. and II. of \(\S 10\) that
\[
\frac{\theta \operatorname{Cos} \phi}{\theta^{\prime} \operatorname{Cos} \phi^{\prime}}=M
\]
where \(\quad \Delta I^{2}=1+2\left(x_{2} \operatorname{Sin} \phi+\frac{\operatorname{Cos} \phi}{\tau_{2}}\right) \theta \operatorname{Cos} \phi+\left(x_{2}{ }^{2}+\frac{1}{\tau_{2}{ }^{2}}\right) \theta^{2} \operatorname{Cos}^{2} \phi\)
From § 4 we have
\[
\begin{aligned}
\frac{\Delta^{\prime 2}}{\theta^{\prime 2} \operatorname{Cos}^{2} \phi^{\prime}} & =1+\frac{2 \operatorname{Sin}\left(\delta+\phi^{\prime}\right)}{\theta^{\prime} \operatorname{Cos} \phi^{\prime}}+\frac{1}{\theta^{\prime 2} \operatorname{Cos}^{2} \phi^{\prime}} \\
& =1+\frac{2 \operatorname{Sin} \delta}{\theta^{\prime}}+2 \operatorname{Cos} \delta \frac{\tan \phi^{\prime}}{\theta^{\prime}}+\frac{1}{\theta^{\prime 2}}+\frac{\tan ^{2} \phi^{\prime}}{\theta^{\prime 2}}
\end{aligned}
\]
substituting as before we find that
\[
\frac{\Delta^{\prime 2}}{\theta^{\prime 2} \operatorname{Cos}^{2} \phi^{\prime}}=\frac{\Delta^{2}}{\theta^{2} \operatorname{Cos}^{2} \phi}
\]
where \(\Delta^{2}=\theta^{2} \operatorname{Cos}^{2} \phi\left(1+2 x_{2} \operatorname{Cos} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{2}}\right)+\)
\[
\theta \operatorname{Cos} \phi \operatorname{Sin}(\delta+\phi)+\mathrm{M}^{2}
\]
in which, for all practical purposes, \(\mathrm{M}^{2}\) may be taken \(=1\).
\[
\text { Similarly } \frac{\mathrm{D}^{2}}{\theta^{\prime 2} \operatorname{Cos}^{2} \phi^{\prime}}=\frac{\mathrm{D}^{2}}{\theta^{2} \operatorname{Cos}^{2} \phi}
\]
where, after dropping insignificant terms,
\[
\begin{aligned}
\mathrm{D}^{2}=1+2 x_{1} \operatorname{Cos} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{1}}+2 \theta \operatorname{Cos} \phi(\mathrm{X} \operatorname{Sin} \phi+ & \mathrm{T} \operatorname{Cos} \phi) \\
& +\theta^{2} \operatorname{Cos}^{2} \phi\left(\mathrm{X}^{2}+\mathrm{T}^{2}\right)
\end{aligned}
\]
in which \(\mathrm{X}=x_{1}+x_{2}\)
\[
\mathrm{T}=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}} .
\]

We also find
\[
\begin{aligned}
& \tan \alpha=\frac{\operatorname{Cos} \delta+\theta \operatorname{Cos} \phi \operatorname{Sin} \phi+\mathrm{X} \theta^{2} \operatorname{Cos}^{2} \phi}{\operatorname{Sin} \delta+\theta \operatorname{Cos}^{2} \phi+\mathrm{T} \theta^{2} \operatorname{Cos}^{2} \phi} \\
& \tan \beta=\frac{\operatorname{Cos}(\theta+\phi)}{\operatorname{Sin}(\delta+\phi)+\theta \operatorname{Cos} \phi} \quad(\operatorname{see} \S 8) . \\
& \tan \lambda=\frac{\tan \phi+\theta \mathrm{X}}{1+\theta \mathrm{T}} .
\end{aligned}
\]
13. Transforming the equations in \(\$ 9\) by means of the relations in \(\S 12\), we get
\[
\begin{aligned}
& \mathrm{C}_{1}=\frac{\mathrm{E}_{1}}{r_{1} \tau_{1}} \frac{\Delta}{\mathrm{D}} \\
& w n_{1} \mathrm{~F}=\stackrel{\mathrm{D}}{\mathrm{D}} \mathrm{E}_{1} \\
& \frac{1}{\mathrm{M}} \frac{\mathrm{~F}}{\sigma}=\frac{n_{1} \mathrm{C}_{1}}{\Delta}=\frac{n_{2} \mathrm{C}_{2}}{\theta \operatorname{Cos} \phi}=\frac{\mathrm{E}_{1}}{r_{1} \tau_{1}} \frac{n_{1}}{\mathrm{D}} \\
& \mathrm{E}_{2}=\frac{n_{2}}{n_{1}} \frac{\mathrm{E}_{1}}{\mathrm{D}} \quad(\text { see } \S 10) . \\
& \mathrm{P}_{2}^{\prime}=\frac{1}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1}} \frac{\theta \cos ^{2} \phi}{\mathrm{D}^{2}}\left(1+\frac{\theta}{\tau_{2}}\right)
\end{aligned}
\]
and if \(\mathrm{P}_{2}\) be the output of the transformer
\[
\mathrm{P}_{2}=\frac{1}{2} \mathrm{E}_{2} \mathrm{C}_{2} \operatorname{Cos} \phi=\frac{1}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1}} \frac{\theta \operatorname{Cos}^{2} \phi}{\mathrm{D}^{2}}
\]
also if \(\mathrm{H}_{1}\) and \(\mathrm{H}_{2}\) be the copper loss in the primary and secondary respectively,
\[
\mathrm{H}_{1}=\frac{1}{2} r_{1} \mathrm{C}_{1}^{2}=\frac{1}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1}^{2}} \frac{\triangle^{2}}{\mathrm{D}^{2}}
\]
\[
\mathrm{H}_{2}=\frac{1}{2} r_{2} \mathrm{C}_{2}^{2}=\mathrm{P}_{2}^{\prime}-\mathrm{P}_{2}=\frac{1}{2} r_{1} \mathrm{E}_{1} \tau_{1} \tau_{2} \quad \frac{\theta^{2} \operatorname{Cos}^{2} \phi}{\mathrm{D}^{2}}
\]
where M, \(\triangle\), and \(D\) have the values given in the last paragraph.
14. When we multiply both sides of the first equation in \(\$ 7\) by \(\frac{1}{2} \mathrm{C}_{1}\), we get
\[
\frac{1}{2} \mathrm{E}_{1} \mathrm{C}_{1} \operatorname{Cos} \alpha=\frac{1}{2} r_{1} \mathrm{C}_{1}^{2}\left\{1+\frac{\tau_{1}}{\Delta^{\prime 2}}\left(\operatorname{Sin} \delta+\theta^{\prime} \operatorname{Cos}^{2} \phi^{\prime}\right)\right\}
\]
which expresses the power \(P_{1}\) supplied to the transformer as the sum of three terms, of which the tirst
\[
\frac{1}{2} r_{1} \mathrm{C}_{1}{ }^{2}=\mathrm{H}_{1}
\]
is equal to the copper loss in the primary coil ; the second term
\[
\frac{1}{2} r_{1} \mathrm{C}_{1}{ }^{2} \frac{\tau_{1} \operatorname{Sin} \delta}{\Delta^{\prime 2}}=\mathrm{H}_{3} \text { say }
\]
is equal to the total iron loss in the transformer ; and the third term
\[
\frac{1}{2} r_{1} \mathrm{C}_{1}{ }^{2} \frac{\theta^{\prime} \tau_{1} \operatorname{Cos}^{2} \phi^{\prime}}{\Delta^{\prime 2}}=\mathrm{P}_{2}^{\prime} \text { say. }
\]
is equal to the power passed down to, and developed in the secondary coil:-

For, neglecting \(r \mathrm{C}^{2}\) losses, the energy entering the transformer on the primary side in any element of time \(d t\) is \(n_{1} \overline{\mathrm{C}}_{1} \frac{d \overline{\mathrm{~F}}}{d t} d t\), and the energy leaving the transformer on the secondary side in the same element of time \(d t\) is \(-n_{2} \mathrm{C}_{2} \frac{d \overline{\mathrm{~F}}}{d t} d t\), hence in the time \(d t\) the transformer absorbs energy to the amount
\[
n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2} \frac{d \overline{\mathrm{~F}}}{d t} d t
\]
of which a part \(d \mathrm{MI}\) goes to increase the magnetic energy of the iron, while the remainder \(d \mathrm{~W}\) is dissipated as heat by hysteresis and eddly currents.

But amp. \(\overline{n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}=\mathrm{F} / \sigma\) so that we may write \(\overline{n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}=\) \({ }_{\sigma}\) Sinzet in which case \(\overline{\mathrm{F}}=\operatorname{FSin}(z v t-\delta)\) where \(\delta\) is the angle of \(\sigma\) magnetic lag:-
hence \(d \mathrm{M}+d \mathrm{~W}=w \frac{\mathrm{~F}^{2}}{\sigma} \operatorname{Sin} w t \operatorname{Cos}(z t-\delta) d t\).
Integrating over a complete period T, MI returns to its original value and we get the core loss per cycle
\[
\mathrm{W}=\frac{1}{2} w \mathrm{~T} \frac{\mathrm{~F}^{2}}{\sigma} \operatorname{Sin} \delta
\]
hence (as the core loss per second \(\mathrm{H}_{3}=\mathrm{W} / \mathrm{T}\))
\[
\begin{aligned}
& \mathrm{H}_{3}=\frac{1}{2} \tau \psi \frac{\mathrm{~F}^{2}}{\sigma} \operatorname{Sin} \delta \\
& =\frac{1}{2} r_{1} \mathrm{C}_{1}{ }^{2} \tau_{1} \operatorname{Sin} \delta \\
& \Delta^{\prime 2} \\
& \text { see } \S 9) .
\end{aligned}
\]

In \(\S 9, \mathrm{P}_{2}^{\prime}\) the total power passed down to and developed in the secondary was shown to be equal to
\[
\frac{1}{2} r_{1} \mathrm{C}_{1} \frac{{ }^{\theta^{\prime}} \frac{\tau_{1} \operatorname{Cos}^{2} \phi^{\prime}}{\Delta^{\prime 2}}}{}
\]
so that the different portions \(H_{1}, H_{3}\) and \(P_{2}^{\prime}\) into which \(P_{1}\) is divided are accounted for, and in § 13 are given the secondary copper loss \(\mathrm{H}_{2}\) and the output \(\mathrm{P}_{2}\) into which \(\mathrm{P}_{2}^{\prime}\) is subsequently divided.

Transforming the above expression for \(\mathrm{H}_{3}\) to one in terms of \(\theta\) and \(\phi\) by \(\S 13\) we find
\[
\mathrm{H}_{3}=\frac{1}{\mathrm{E}_{1}} \mathrm{E}_{r_{1} \tau_{1}}^{2} \frac{\mathrm{I}^{2}}{\mathrm{D}^{2}} \sin \delta
\]
and collecting the other power expressions
\[
\begin{aligned}
& \mathrm{H}_{1}=\frac{1}{2} \frac{\mathrm{E}_{1}}{r_{1} \tau_{1}{ }^{2}} \frac{\Delta^{2}}{\mathrm{D}^{2}} \\
& \mathrm{H}_{2}=\frac{1}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1} \tau_{2}} \frac{\theta^{2} \operatorname{Cos}^{2} \phi}{\mathrm{D}^{2}} \\
& \mathrm{P}_{2}^{\prime}=\frac{1}{2} \frac{\mathrm{E}_{1}{ }^{2}}{r_{1} \tau_{1}} \theta \cos ^{2} \phi \\
& \mathrm{D}^{2}
\end{aligned} \mathrm{P}_{2}+\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3} .
\]

It is worth noting that, as \(\mathrm{M} / \mathrm{D}=1\) to the first order, the iron loss \(\mathrm{H}_{3}\), and the flux F will, to the same order, be constant throughout the range of operation of a transformer.
15. The efficiency \(\eta\), of the transformer being
\[
\begin{aligned}
& =\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{2}+\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}} \\
& \text { we have } \eta=\frac{\theta \operatorname{Cos}^{2} \phi}{\theta \operatorname{Cos}^{2} \phi+\frac{\Delta^{2}}{\tau_{1}}+\frac{\theta^{2} \operatorname{Cos}^{2} \phi}{\tau_{2}}+\mathrm{I}^{2} \operatorname{Sin} \delta} \\
& \qquad=\frac{\theta \operatorname{Cos}^{2} \phi}{\Omega}, \text { where } \Omega=\operatorname{Sin} \delta+\frac{1}{\tau_{1}}+\theta \operatorname{Cos} \phi\{\operatorname{Cos} \phi+
\end{aligned}
\]
\[
\begin{aligned}
& \left.\frac{2 \operatorname{Sin}(\delta+\phi)}{\tau_{1}}+2\left(x_{2} \operatorname{Sin} \phi+\frac{\operatorname{Cos} \phi}{\tau_{2}}\right) \operatorname{Sin} \delta\right\}+\theta^{2} \operatorname{Cos}^{2} \phi \\
& \times\left\{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\frac{2}{\tau_{1}}\left(x_{2} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{2}}\right)+\left(x_{2}^{2}+\frac{1}{\tau_{2}^{2}}\right) \operatorname{Sin} \delta\right\}
\end{aligned}
\]

To find the value of \(\theta\), for which \(\eta\) is a maximum when \(\phi\) is constant, we note that \(\eta\) is of the form
\[
\frac{\theta}{a+b \theta+c \theta^{2}}
\]
which is a maximum when \(\theta_{2}=a / c=\theta_{0}{ }^{2}\) (say),
and its maximum value is
\[
\frac{1}{b+2 a / \theta_{0}} .
\]

Hence the value of \(\theta\) for maximum efficiency is given by
\[
\theta^{2} \operatorname{Cos}^{2} \phi=\frac{\operatorname{Sin} \delta+\frac{1}{\tau_{1}}}{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\frac{2}{\tau_{1}}\left(x_{2} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{2}}\right)+\left(x_{2}{ }^{2}+\frac{1}{\tau_{2}^{2}}\right) \sin \delta}
\]
which for all practical purposes may be reduced to
\[
\theta^{2} \operatorname{Cos}^{2} \phi=\frac{\operatorname{Sin} \delta}{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}}
\]
and the maximum efficiency is given to a sufficient approximation by
\[
\eta(\max)=\frac{1}{1+\frac{2}{\operatorname{Cos} \phi} \sqrt{\left\{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\right\}} \operatorname{Sin} \delta+2 x_{2} \tan \phi \operatorname{Sin} \delta}
\]

Note.-It is obvious that all the formulae we have obtained will apply to non-inductive loads when we make \(\phi=0\), and to loads having capacity when we make \(\phi\) negative.
16. From \(\S 15\) we find that the ratio of the copper losses \(\mathrm{H}_{1}+\mathrm{H}_{2}\) to the iron loss \(\mathrm{H}_{3}\) is
\[
=\frac{\frac{\Delta^{2}}{\tau_{1}}+\frac{\theta^{2} \operatorname{Cos}^{2} \phi}{\tau_{2}}}{\mathrm{I}^{2} \operatorname{Sin} \delta}
\]

Putting in this expression for \(\triangle\) and M their values given in \(\S 12\) and then substituting for \(\theta\) its value at maximum efficiency, we find that this ratio is
\(=1-\operatorname{Sin} \phi\left(x_{2} \operatorname{Sin} \delta-\frac{\operatorname{Cos} \delta}{\tau}\right) \sqrt{\frac{2 \tau}{\operatorname{Sin} \delta}}+\) terms of lower orters,
where in the second term we take \(\tau_{1}=\tau_{2}=\tau\).
Hence at maximum efficiency, when the load is non-inductive (\(\phi=0\)) the copper and the iron losses of a closed-circuit transformer are very approximately equal, and differ by a small amount given by the above formula when the load is inductive.
17. To determine the value of \(\theta\left(\theta_{2}\right.\) say \()\) for which the copper losses are \(z\) times the iron loss; we have (see \(\S 14\))
\[
\frac{\Delta^{2}}{\tau_{1}}+\frac{\theta^{2} \operatorname{Cos}^{2} \phi}{\tau_{2}}=z \mathrm{M}^{2} \operatorname{Sin} \delta
\]
from which, after substituting for \(\triangle\) and \(M\) their values given in \(\$ 12, \theta_{z}\) can in general be determined.

For practical purposes \(\theta_{z}\) will be given to a high order of accuracy by
\[
\theta_{z} \operatorname{Cos} \phi=\sqrt{\frac{z \operatorname{Sin} \delta}{\mathrm{~T}}+\frac{z \operatorname{Sin} \delta}{\mathrm{~T}}\left(x_{2} \operatorname{Sin} \phi+\frac{\operatorname{Cos} \phi}{\tau_{2}}\right)-\frac{\operatorname{Sin}(\delta+\phi)}{2}, ~}
\]
where \(\mathrm{T}=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\)
18. In \(\S 13\) it has been shown that the output
\[
\begin{aligned}
& \mathrm{P}_{2}=\frac{1}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1}} \frac{\theta \operatorname{Cos}^{2} \phi}{1+2 x_{1} \operatorname{Cos} \delta+\frac{2 \operatorname{Sin} \delta}{\tau_{1}}+2 \theta \operatorname{Cos} \phi\{\mathrm{X} \operatorname{Sin} \phi+\mathrm{T} \operatorname{Cos} \phi\}+} \\
& \frac{\theta^{2} \operatorname{Cos}^{2} \phi\left(\mathrm{~N}^{2}+\mathrm{T}^{2}\right)}{}
\end{aligned}
\]
where \(\mathrm{X}=x_{1}+x_{2}\) and \(\mathrm{T}={ }_{\tau_{1}}^{1}+\frac{1}{\tau_{2}}\)
Let \(\mathrm{P}_{0}=\frac{1}{2} \frac{\mathrm{E}_{1}{ }^{2}}{r_{1} \tau_{1}\left\{1+2 x_{1} \operatorname{Cus} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{1}}\right\}}\)
\[
\begin{aligned}
& =\frac{\text { Iron loss on open secondary }}{\text { Sin } \delta} \quad(\text { see } \S 14) \\
& =\frac{\text { Power absorbed on open secondary }}{\text { Power factor of transformer on open secondary }} \text { (q.p.) }
\end{aligned}
\]
and take \(y=\frac{\mathrm{P}_{2}}{\mathrm{P}_{0} \operatorname{Cos} \phi}\)
so that \(y\) is proportional to the output ;
also let
\(\mathrm{X} \operatorname{Sin} \phi+\mathrm{T} \operatorname{Cos} \phi=p\)
\(\mathrm{X} \operatorname{Cos} \phi-\mathrm{T} \operatorname{Sin} \phi=q\)
and the above equation in \(\mathrm{P}_{2}\) can be put into the form
\[
y=\frac{\theta \operatorname{Cos} \phi}{1+2 p \theta \operatorname{Cos} \phi+\theta^{2} \operatorname{Cos}^{2} \phi\left(p^{2}+q^{2}\right)}
\]
or
\[
y=\theta \operatorname{Cos} \phi\left[1-2 p \theta \operatorname{Cos} \phi+\left(3 p^{2}-q^{2}\right) \theta^{2} \operatorname{Cos}^{2} \phi\right]
\]

Inverting this series we get
\[
\begin{aligned}
\theta \operatorname{Cos} \phi & =y\left[1+2 p y+\left(5 p^{2}+q^{2}\right) y^{2}\right] \\
& =y \mathrm{D}_{0}{ }^{2}
\end{aligned}
\]
\(\left[\right.\) where \(\left.\mathrm{D}_{0}=1+p y+\frac{1}{2}\left(4 p^{2}+q^{2}\right) y^{2}\right]\)
a very important relation, as it will enable us to transform all our formulae from the independent variable \(\theta\) to what is the practically important independent variable, namely, the output of the transformer.
19. Thus if we let
\[
\mathrm{C}_{0}=\frac{\mathbf{E}_{1}}{r_{1} \tau_{1}\left(1+x_{1} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{1}}\right)}
\]
\(=\) Primary current on open secondary,
the formule in § 13 become
\[
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{C}_{0} \sqrt{y^{2} \mathrm{D}_{0}{ }^{2}\left(1+2 x_{2} \operatorname{Cos} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{2}}\right)+2 y \operatorname{Sin}(\delta+\phi)+\frac{1}{\mathrm{D}_{0}{ }^{2}}} \\
& \mathrm{C}_{2}=\frac{n_{1}}{n_{2}} \mathrm{D}_{0} \mathrm{C}_{0} y \\
& \frac{\mathrm{~F}}{\sigma}=n_{1} \mathrm{C}_{0} \sqrt{\frac{1}{\mathrm{D}_{0}{ }^{2}}+2 y\left(x_{2} \operatorname{Sin} \phi+\frac{\operatorname{Cos} \phi}{\tau_{2}}\right)+y^{2}\left(x_{2}{ }^{2}+\frac{1}{\tau_{3}{ }^{2}}\right)} \\
& \mathrm{E}_{2}=\frac{n_{2}}{n_{1}} \frac{\mathrm{E}_{1}}{\mathrm{D}_{0}\left(1+x_{1} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{1}}\right)}
\end{aligned}
\]
also
Iron loss \(=\mathrm{P}_{0} \operatorname{Sin} \delta\left\{\frac{1}{\mathrm{D}_{0}{ }^{2}}+2 y\left(x_{\mathrm{i}} \operatorname{Sin} \phi+\frac{\operatorname{Cos} \phi}{\tau_{2}}\right)+y^{2}\left(x_{2}{ }^{2}+\frac{1}{\tau_{2}{ }^{2}}\right)\right\}\)
Copper losses \(=\mathrm{P}_{0}\left\{y^{2} \mathrm{D}_{0}{ }^{2}\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+2 \frac{x_{2}}{\tau_{1}} \operatorname{Cos} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{1} \tau_{2}}\right)+2 y \frac{\operatorname{Sin}(\delta+\phi)}{\tau_{1}}\right.\)
\[
\left.+\frac{1}{\mathrm{D}_{0}{ }^{2} \tau_{1}}\right\}
\]
\[
\tan \alpha=\frac{\operatorname{Cos} \delta+y \operatorname{Sin} \phi+(\mathrm{X}+2 p \operatorname{Sin} \phi) y^{2}}{\operatorname{Sin} \delta+y \operatorname{Cos} \phi+(\mathrm{T}+2 p \operatorname{Cos} \phi) y^{2}}(\mathrm{q} \cdot \mathrm{p} .)
\]
\[
\operatorname{Cot} \beta=\tan (\delta+\phi)+\frac{y}{\operatorname{Cos}(\delta+\phi)}(\mathrm{q} \cdot \mathrm{p} .)
\]
\[
\tan \lambda=\frac{\operatorname{Sin} \phi+\mathrm{X} y}{\operatorname{Cos} \phi+\mathrm{T} y}(\mathrm{q} \cdot \mathrm{p} .)
\]
where \(a\) and \(\pi+\lambda\) are the angles that \(\overline{\mathrm{C}}_{1}\) and \(\overline{\mathrm{C}}_{2}\) are behind \(\overline{\mathrm{E}}_{1}\) in phase respectively, and \(\pi-\beta\) is the angle \(\overline{\mathrm{C}}_{2}\) is behind \(\overline{\mathrm{C}}_{1}\).

If \(\pi+\epsilon\) be the angle \(\mathrm{E}_{2}\) is behind \(\mathrm{E}_{1}\) in phase, then
\(\boldsymbol{\epsilon}=\lambda-\phi\)
and \(\tan \epsilon=\frac{q y}{1+p y}\)
a small quantity of the first order, so that \(\overline{\mathrm{E}_{2}}\) and \(\overline{\mathrm{E}}_{1}\) are always approximately in opposite phases.

Obviously all the above formulae will apply to non-inductive loads when \(\phi\) is made zero in them.
20. The pressure drop at the secondary terminals from no load to any value of the load can now be expressed in terms of the load, its power factor, the transformer numerics and the leakage coefficients as follows :-
We have (see § 19)
\[
\mathrm{E}_{2}=\frac{n_{2}}{n_{1}}-\frac{\mathrm{E}_{1}}{\mathrm{p}_{0}\left(1+x_{1} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{1}}\right)}
\]
so that
\[
\begin{aligned}
& \frac{\mathrm{E}_{2}\left(\text { at load given by } y^{\prime}\right)}{\mathrm{E}_{2}(\text { at no load })}=\frac{1}{\mathrm{D}_{0}} \\
& =\frac{1}{1+p y+\frac{1}{2}\left(4 p^{2}+q^{2}\right) y^{2}} \\
& =1-p^{\prime}-\frac{1}{2}\left(2 p^{2}+q^{2}\right) y^{2}
\end{aligned}
\]
and the percentage drop for any load given by \(y\)
\(=100 y\left[p+\frac{1}{2}\left(-2 p^{2}+q^{2}\right) y\right]\).
Remembering the values of \(p\) and \(q\) (§ 18) we see that the drop depends on the sum of the reciprocals of the transformer numerics (\(i\) e on \(T\)) and on the sum of the leakage coefficients. We also see that for non-inductive loads the leakage effect on the drop is only a second-order term, while for inductive loads it is a first-order term, thus showing how important it is to have a small leakage in a transformer that has to operate inductive loads.
21. If the transformer were so designed that at full load it works with maximum efficiency, then the full load value of \(y\) or
and the percentage drop from no load to full ioad in such a case is
\[
=100 \sqrt{\frac{\operatorname{Sin} \delta}{T}}\left\{p-\left(p^{2}-\frac{q^{2}}{2}\right) \sqrt{\frac{\operatorname{Sin} \delta}{T}}\right\}
\]
which shows that the limit of possible excellence in regulation of a transformer, designed as above and perfectly wound, i.e., having no magnetic leakage, is when the percentage drop from no load to full load is
\(100 \sqrt{ } \mathrm{~S} \operatorname{Sin} \delta \operatorname{Cos} \phi\).
It has already been shown that the maximum efficiency of a transformer is
\[
=1-\frac{2}{\operatorname{Cos} \phi} \sqrt{\operatorname{TSin} \delta} \quad(q \cdot p .)
\]
so that as regards both efticiency and regulation \(\frac{1}{\operatorname{Tsin} \delta}\) may be taken as the measure of the excellence of a transformer when the magnetic leakage or nature of the winding is not considered.

In general, for a transformer with negligible leakage, the percentage drop from no load to a load \(P_{2}\) heing
\[
100 \frac{\mathrm{P}_{3}}{\mathrm{P}_{0} \operatorname{Cos} \phi} \mathrm{TCos} \mathrm{P}
\]
as \(\mathrm{P}_{0}=\frac{1}{2} \frac{\mathrm{E}_{1}{ }^{2}}{r_{1} \tau_{1}}\) (q.p.)
the drop (p.c.) \(=200 \frac{r_{1} \mathrm{P}_{2}}{\mathbf{E}_{1}{ }^{2}}\left(1+\frac{\tau_{1}}{\tau_{2}}\right)\)
\[
=400 \frac{r_{1}}{\mathrm{E}_{1}^{2}} \mathrm{P}_{2} \quad \text { (q.p.) }
\]

Reducing to practical units we find that the percentage drop in a transformer cannot be less than
\[
200 \times \text { Prinary ohms } \times \frac{\text { Output in Watts }}{(\text { Primary virtual volts })^{2}}
\]

In no practical case is the leakage negligible, but with interleaved winding \(y^{2}\left(x_{1}+x_{2}\right)^{2}\) will be very small and \(y^{2}\left\{\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\right\}_{2}^{2}\) is very small in transformers of 20 K . W. or over, hence for such transformers the drop per cent. from no load to a load \(\mathrm{P}_{2}\)
\[
=\frac{100 \mathrm{P}_{2}}{\mathrm{P}_{0} \operatorname{Cos} \phi}\left\{\left(x_{1}+x_{2}\right) \operatorname{Sin} \phi+\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\right) \operatorname{Cos} \phi\right\}(\mathrm{q} \cdot \mathrm{p} \cdot)
\]

If \(P_{2}\) be the capacity of the transformer as usually rated on non-inductive load, then \(P_{2} \operatorname{Cos} \phi\) will be its capacity on an inductive load of power factor \(\operatorname{Cos} \phi\), as for this output we get approximately the same secondary current as before. Hence we see from the preceding formula that if \(\mathrm{X}=\mathrm{T} \tan \frac{\psi}{2}\) the regulution for loads whose power factors are less than \(\operatorname{Cos} \psi\) is better than that for non-inductive loads.

If the load has capacity then \(\phi\) is negative, and the capacity effect in reducing the drop or even prodncing a rise in voltage with load can easily be deduced from the general expression for the drop given in \(\S 20\).
22. When the percentage drop of a transformer for a noninductive load \(P_{2}\) is known, we can by means of the formula in § 20 calculate the sum of its leakage coefficients.

For a non-inductive load-
\(\operatorname{Drop}(\) p.c. \()=100 y\left\{\mathrm{~T}+\left(\mathrm{T}^{2}+\frac{\mathrm{X}^{2}}{2}\right) y\right\}\)
where in this case \(y=\frac{\mathrm{P}_{2}}{\mathrm{P}_{0}}\)
As \(\mathrm{P}_{0}\) is the power absorbed on open secondary divided by the power factor of the transformer on open secondary it can be determined. It has been shown in \(\S 7\) how to practically determine \(\tau_{1}\), and \(\tau_{2}\) can be obtained from \(\tau_{1}\) as follows:-
\[
\frac{\tau_{1}}{\tau_{2}}=\frac{\frac{n_{1}^{2}}{r_{1}}}{\frac{n_{2}^{2}}{r_{2}}}(\S 6) .
\]
\(r_{1}\) and \(r_{2}\) can be measured and
\(\frac{n_{1}}{n_{2}}=\frac{\text { Primary volts }}{\text { Secondary volts on open secondary (§ 19). }}\)
Hence substituting in the above equation the values of \(y, \mathrm{~T}\), and the drop, X or \(x_{1}+x_{2}\) can be found.

It is obvious that we can also by means of the general formula in \(\S 20\) determine both \(x_{1}+x_{2}\) and \(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\) for any transformer from obsèrvations of the voltage drop for loads with different power
factors. This would not be a satisfactory method for determining the transformer numerics, as their values so obtained would depend on the correct reading of small differences.
23. As an illustration of how closely this theory agrees with practice I will discuss the following manufacturer's specifiction of the performance of a \(10 \mathrm{~K} . \mathrm{W}\). Westinghouse O.D. transformer.

Primary volts, 2100:- Frequency, 60 periods per sec.:-
Output, 10 K.W.:- Iron loss, 138 watts :-
Copper loss at full load, 159 watts :-

\section*{Efficiency (per cent.)}
\begin{tabular}{llll}
Full load & - & - & 97.1 \\
\(\frac{3}{4}\) load - & - & - & 97.05 \\
\(\frac{1}{2}\) load - & - & - & 96.55 \\
\(\frac{1}{4}\) load - & - & 94.4
\end{tabular}

Regulation (per cent.)
Power factor - 1.0 - 1.65
\begin{tabular}{lllll}
\("\) & \("\) & - & .9 & -2.45 \\
\("\) & \("\) & - & \(-8-2.65\) \\
\("\) & \("\) & - & \(6-2.80\)
\end{tabular}

In the first place we will find whether any definite values of X and T will simultaneously satisfy the four equations in these two quantities obtained from the four observations of drop for different power factors.

If we substitute \(x\) for \(y \mathrm{X}\) and \(t\) for \(y \mathrm{~T}\) in the general expresssion in \(\$ 20\) for the drop per cent. (R say) we get
\[
\begin{aligned}
\mathrm{R}= & 100\left\{x \operatorname{Sin} \phi+t \operatorname{Cos} \phi+x^{2}\left(\operatorname{Sin}^{2} \phi+\frac{\operatorname{Cos}^{2} \phi}{2}\right)+x t \operatorname{Sin} \phi \operatorname{Cos} \phi+\right. \\
& \left.t^{2}\left(\operatorname{Cos}^{2} \phi+\frac{\operatorname{Sin}^{2} \phi}{2}\right)\right\}
\end{aligned}
\]

By means of this equation \(x\) and \(t\) were determined from the first two observations of the regulation and found to be
\[
x=.0218, \quad t=.016
\]

Using these values and calculating R for the power factors .8 and .6 , we found that when
\[
\begin{array}{ll}
\operatorname{Cos} \phi=.8 & \mathrm{R}=2.66 \\
\operatorname{Cos} \phi=.6 & \mathrm{R}=2.78
\end{array}
\]
which agree very closely with the observed values of \(R\), namely 2.65 and 2.80.

As in each case the full load is \(10 \operatorname{Cos} \phi\) K.W. (see \(\$ 21\)) and in the above
\[
y=\frac{\text { Full load }}{\mathrm{P}_{0} \operatorname{Cos} \phi}
\]

20 Proceedings of the Royal Society of Victoria.
we have at full load
\[
y=\frac{10000}{\mathrm{P}_{0}} \cdot 10^{7}
\]
but \(x=y \mathrm{X}=.0218\) and \(t=y^{\prime} \mathrm{T}=.016\)
\(\therefore 10^{7} \frac{\mathrm{X}}{\mathrm{P}_{0}}=\frac{.0218}{10000}\) and \(10^{7}{ }^{\top} \overline{\mathrm{P}}_{0}=\stackrel{.016}{ }=\frac{0}{10000}\)
where \(\mathrm{P}_{0}\) has its usual signification (see § 18).
The iron loss is given as 138 watts, and we may consider it as constant without introducing any appreciable error, so that
\(\mathrm{P}_{0} \operatorname{Sin} \delta=138.10^{7}\)
hence from (I.)
\[
\left.\begin{array}{l}
\mathrm{X} \operatorname{Sin} \delta=\frac{.0218 \times 138}{10,000}=.000301 \tag{II.}\\
\mathrm{TS} \operatorname{Sin} \delta=\frac{.016 \times 138}{10,000}=.000221
\end{array}\right\}
\]

The maximum efficiency of the transformer when \(\operatorname{Cos} \phi=1\) being very approximately
\[
=\frac{1}{1+2 \sqrt{\overline{\operatorname{Tin}} \delta}} \quad(\text { see } \S 15)
\]
is \(=.971\)
which is the same as the observed value at full load.
The copper losses \(\mathrm{H}_{1}+\mathrm{H}_{2}\) when \(\phi=0\) being
\(=\mathrm{P}_{0}\left\{y^{2} \mathrm{D}_{0}{ }^{2}\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\right)+2 y \frac{\operatorname{Sin} \delta}{\tau_{1}}\right\} \quad\) (see § 19)
\(\mathrm{H}_{1}+\mathrm{H}_{2}=\frac{\mathrm{T}}{\mathrm{P}_{0}} \mathrm{P}_{2}{ }^{2}\left(\mathrm{D}_{0}{ }^{2}+\frac{\mathrm{P}_{0} \operatorname{Sin} \delta}{\mathrm{P}_{3}}\right)\)
\(10^{7}\left(\mathrm{H}_{1}+\mathrm{H}_{2}\right)=\frac{.016}{10000} \mathrm{P}_{2}{ }^{2}\left(\mathrm{D}_{0}{ }^{2}+\frac{138 \cdot 10^{7}}{\mathrm{P}_{2}}\right)\)
where, when \(\operatorname{Cos} \phi=1\).
\[
\mathrm{D}_{0}{ }^{2}=1+2 \frac{\mathrm{~T}}{\mathrm{P}_{0}} \mathrm{P}_{2}+\frac{1}{2}\left(6 \frac{\mathrm{~T}_{2}}{\mathrm{P}_{0}{ }^{2}}+\frac{\mathrm{X}^{2}}{\mathrm{P}_{0}{ }^{2}}\right) \mathrm{P}_{2}{ }^{2} \quad(\text { see § 18) }
\]
and substituting from (I.)
\[
\mathrm{D}_{0}{ }^{2}=1+\frac{32}{10^{7}} \frac{\mathrm{P}_{2}}{\frac{0^{7}}{}}+\frac{1}{10^{11}}\left(\frac{\mathrm{P}_{2}}{10^{7}}\right)^{2}
\]

Let the load be \(10000 z\) watts so that \(z\) is the fraction of full load then
\[
\mathrm{P}_{2}=10000 z 10^{7}
\]
and the copper losses in watts for any fraction \(z\) of the full load are
\[
=\frac{\mathrm{H}_{1}+\mathrm{H}_{2}}{10^{7}}=160 \tilde{z}^{2}\left(1+\frac{32}{10^{3}} z+\frac{1}{\left.10^{3} z^{2}+\frac{138}{10^{4} z}\right)}\right.
\]
from which we deduce for the transformer in question that the copper losses are
\(=167\) watts at full load
\(=94\) watts at \(\frac{3}{4}\) load
\(=42\) watts at \(\frac{1}{2}\) load
\(=10\) watts at \(\frac{1}{4}\) loard.

The iron loss being 138 watts we find that the efficiency at full load is 97.04 per cent.,
\begin{tabular}{rl}
that at \(\frac{3}{4}\) load is 97.02 & \("\) \\
\("\) & \("\) \\
\hline\(\frac{1}{2}\) load is 96.54 & \("\) \\
" " & \(\frac{1}{4}\) load is 94.40
\end{tabular}
which figures, when compared with those in the maker's specification given above, show a very remarkable agreement.

Thus we have been able to deduce with considerable accuracy from two observations of the regulation for different power factors, and the observed iron loss, the other details of the transformer given by the manufacturer.

If we assume \(\delta=50^{\circ}\) which would mean that the power factor on open secondary was equal to Sin \(\delta\) or .766 , and take \(\tau_{1}=\tau_{2}\) then \(\tau_{1}=6930\) for this 10 K.W. 60 period transformer ; and \(x_{1}+x_{2}=\) .0004.
24. As a second illustration of the agreement between the foregoing theory and practice I will consider the record of a test of a Westinghouse transformer, published in Fleming's "Alternate Current Transformer," vol. i., pp. 564, 569.

From the no-load readings of \(\mathrm{C}_{1}, \mathrm{P}_{1}\), and \(\mathrm{E}_{2}\) we can determine as has been explained (\(\$ 8,19,22\)) \(\tau_{1}, \operatorname{Sin} \delta, n_{1} / n_{2}\) and \(\tau_{2}\), while the voltage drop for any load enables us to find \(x_{1}+x_{2}\) when \(\tau_{1}, \tau_{2}\) and Sind are known (§ 22).

These constants together with \(r_{1}, r_{2}\) and the primary voltage enable us to calculate all the variable quantities connected with the transformer for any load. This has been done for the above transformer tested by Fleming, and the calculated values of \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{P}_{1}, \eta\), and \(\operatorname{Cos} \alpha\) for each output in his test are given in Table I. in parallel columns with the values experimentally obtained by him for these quantities.

As the whole behaviour of the transformer is to be evolved from the no-load readings for \(\mathrm{C}_{1}, \mathrm{P}_{1}\), and \(\mathrm{F}_{2}\), and the full load reading of \(\mathrm{E}_{2}\), it is necessary that these should be obtained with accuracy.

The figures for \(C_{1}\) and \(P_{1}\) given in the record of the test were probably obtained very near the zeros of the scales of the ammeter and wattmeter used, so instead of relying on single readings 1 obtained the no-load values of \(\mathrm{C}_{1}\) and \(\mathrm{P}_{1}\) by plotting a few of the readings for them near no-load against the output, and taking the values given by the points where the curves obtained intersect the no-load axis.

In this way I find that \(\mathrm{C}_{1}\) at no-load \(=.058 \mathrm{amp}\). and \(\mathrm{P}_{1}=\) 110 watts, which values give the same power factor, .i9, as Fleming obtained.

It will be seen on inspection of the following table, that the agreement between the values \(I\) have calculated and those observed by Fleming is remarkably close. A very slight modification or correction of the primary wattmeter readings, which the recorded values of the power factor seem to suggest, would make the agreement almost perfect when allowance is made for the inevitable variations from mathematical accuracy of any series of observations.

\section*{TABLE I.}

Comparison of the measured values of the variables obtained in a test by Fleming of a Westinghouse transformer with values thenretically calculated by the author from no-load values and voltage drop.

Power, 6500 watts. Frequency, 82.5 periods per second.
\(r_{1}=5.95\) ohms; \(r_{2}=0.0108\) ohms, at \(96^{\circ} \mathrm{F}\).
\(E_{1}=2400\) volts \(; E_{2}=\left\{\begin{array}{l}101 \text { volts at no-load } \\ 98.6 \text { volts at } 6384 \text { watts. }\end{array}\right.\)
\[
\left\{\begin{array}{l}
\tau_{1}=6950, \tau_{2}=6780, \operatorname{Sin} \delta=0.79, \frac{n_{1}}{n_{2}}=23.76, \\
x_{1}+x_{2}=0.003
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{辟} & تِّ & \\
\hline & \(\xrightarrow{\text { cose }}\) & \\
\hline \multirow[t]{2}{*}{} & 皆 & －\％notriont \\
\hline & & －\％ \\
\hline \multirow[t]{2}{*}{號} & 皆 & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{} & 0000060以 \\
\hline \multirow[t]{2}{*}{} & 毞 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline \multirow[t]{2}{*}{淢} & 感 & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { 7id } \\
\text { zaditn }
\end{gathered}
\]} & \\
\hline
\end{tabular}

25．The method by which magnetic leakage has been dealt with in the preceding theory is not applicable to open circuit transformers．It will be seen in Section III．that this method depends on the fact that in closed circuit transformers the vector \(\overline{n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}\) which represents the magnetizing ampere turns is small compared with either \(n_{1} \mathrm{C}_{1}\) or \(n_{2} \mathrm{C}_{2}\) ，throughout the greater portion of the working range ；or，differently stated，that \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) are practically in opposition in phase，and that \(n_{1} \mathrm{C}_{1}-n_{2} \mathrm{C}_{2}\) is small relatively to either \(n_{1} \mathrm{C}_{1}\) or \(n_{2} \mathrm{C}_{2}\) from a small fraction of full load onwards，in closed－circuit transformers．

In open-circuit transformers, on account of the great reluctance of their magnetic circuits, the magnetizing ampere turns are necessarily high, and neither of the two conditions stated above are approximately fulfilled unless over a small range near full load.

If we neglect leakage, or be satisfied with the rough approximation to its effects that the present method affords for opencircuit transformers, then the theory given-as it is equally valid in other particulars for the two types-will apply with fair approximation to accuracy to the open-circuit type, especially in the neighbourhood of full load.

There will be considerable difference, however, in the values of the constants and other characteristics of transformers of equal capacity of the two types.

Let us assume that we have two transformers, one of each type, in which the cores, of the same iron, have the same cross section and volume. Let \(\tau_{1}, \tau_{2}, \delta, \sigma, \theta\) refer to the closed, and \(\tau_{1}{ }^{0}, \tau_{2}{ }^{0}, \delta^{0}, \sigma^{0}, \theta^{0}\) refer to the open circuit one. Then if they are so wound that when working under similar conditions their resultant fluxes F and \(\mathrm{F}^{0}\) are equal,
(a) Since \(\frac{\mathrm{F}}{\sigma}=\mathrm{amp} .\left(\overline{n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}\right)\)
(where \(\sigma=4 \pi\) permeance of magnetic circuit) their magnetizing ampere turns will be inversely proportional to the permeances of their magnetic circuits.
(b) Their iron losses will be equal or
\[
\frac{1}{2} w \frac{\mathrm{~F}^{2}}{\sigma} \operatorname{Sin} \delta=\frac{1}{2} w \frac{\mathrm{~F}^{02}}{\sigma^{0}} \operatorname{Sin} \delta^{0}(\text { see } \S 14)
\]
and as \(\mathrm{F}=\mathrm{F}^{0}\)
\[
\frac{\operatorname{Sin} \delta}{\sigma}=\frac{\sin \delta^{0}}{\sigma^{0}}
\]
or the sines of the angles of magnetic lag of the tze transformers are proportional to the permeances of their magnetic circuits.

Again if the two cores, carrying equal fluxes, have their secondary coils such that the outputs and secondary voltages are equal, the sections of their secondary wires and the numbers of their secondary turns will be equal, and hence the conductivities of their secondary copper belts will be equal, so that
\(\frac{\tau_{2}}{\sigma}=\frac{\tau_{2}{ }^{0}}{\sigma^{0}}(\) see \(\S 6)\)
or the secondary numerics are proportional to the permeances of the two magnetic circuits.

If the closed-circuit transformer be of the core type, so that its windings are similarly arranged to those of the other, then approximately,
\(\frac{\tau_{1}}{\sigma}=\frac{\tau_{1}{ }^{0}}{\sigma^{0}}\) and hence \(\operatorname{TSin} \delta=\mathrm{T}^{0} \operatorname{Sin} \delta^{0}\).
If the method of treating leakage was equally legitimate for the two types, we have also, approximately,
\(\frac{x_{1}}{x_{1}^{0}}=\frac{x_{2}}{x_{2}^{0}}=\frac{\sigma^{0}}{\sigma}(\) see \(\S 34)\), provided the windings are similar. For a non-inductive load,
\(\theta=\frac{\mathrm{P}_{2}}{\mathrm{P}_{0}}=\frac{\mathrm{P}_{2} \operatorname{Sin} \delta}{\operatorname{Tron} \operatorname{los} s}\)
to the first order for both, hence if \(\theta\) and \(\theta^{0}\) refer to the same output, that is to the same fraction of full load in each
\(\frac{\theta}{\theta^{0}}=\frac{\operatorname{Sin} \delta}{\operatorname{Sin} \delta^{0}}=\frac{\sigma}{\sigma^{0}}\) approximately
that is, the values of the co-ordinate \(\theta\) jor the same output are proportional to the permeances of the magnetic circuts.
26. In order to compare the rates of approach to opposition of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) in transformers of the two types, let us consider the equation
\[
\operatorname{Cot} \beta=\tan (\delta+\phi)+\frac{y}{\operatorname{Cos}(\delta+\phi)} \quad(\text { see } \S 19)
\]
which is correct to the first order for both, where \(\pi-\beta\) is the angle \(\mathrm{C}_{2}\) is behind \(\mathrm{C}_{1}\) in phase.

For a non-inductive load
\[
y=\frac{\mathrm{P}_{2}}{\mathrm{P}_{0}}=\frac{\mathrm{P}_{2} \operatorname{Sin} \delta}{\text { Iron } \operatorname{los} s}=\frac{\mathrm{P}_{2}}{\mathrm{H}_{3}} \operatorname{Sin} \delta
\]
so that
\[
\operatorname{Cot} \beta=\tan \delta\left(1+\frac{\mathrm{P}_{2}}{\mathrm{H}_{3}}\right)
\]
for both types when \(\phi=0\).
But \(\delta\) for the closed circuit type will be \(50^{\circ}\) or over, and for the open circuit (hedgehog) type will be about \(4^{\circ}\); and if we assume (which will be sufficiently accurate for our present purpose) that in transformers of equal capacity of the two types
the iron losses are equal, we find, taking the figures for the 10 K.W. transformer discussed in \(\S 23\), that \(\beta\) will be given by the equation
\[
\operatorname{Cot} \beta=\tan \delta\left(1+z \frac{10,000}{138}\right)
\]
where \(z\) is the fraction of full load and \(\delta=50^{\circ}\) for the closedcircuit, and \(=4^{\circ}\) for the open-circuit transformer.

The figures in the following table, calculated from the above formula, show the relative approach to opposition of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) in \(10 \mathrm{~K} . \mathrm{W}\). transformers of the two types.
\begin{tabular}{ll|c|c|c|c|c}
\hline Fractions of Full Load - \(\quad-\) & - & 0 & 0.1 & 0.25 & 0.5 & 1.0 \\
\hline\(\beta\) for closed-circuit transformer - & \(40^{\circ}\) & \(5^{\circ}\) & \(2.5^{\circ}\) & \(1.3^{\circ}\) & \(0.7^{\circ}\) \\
\hline\(\beta\) for open-current transformer - & \(86^{\circ}\) & \(60^{\circ}\) & \(37^{\circ}\) & \(21^{\circ}\) & \(11^{\circ}\) \\
\hline
\end{tabular}

In both cases the approach to opposition will be quicker for larger transformers, as in them the iron loss is a smaller fraction of the full load output.

For inductive loads having a constant power factor \(\operatorname{Cos} \phi\)
\[
\operatorname{Cot} \beta=\tan (\delta+\phi)+\frac{\mathrm{P}_{2} \operatorname{Sin} \delta}{\mathrm{H}_{3} \operatorname{Cos} \phi \operatorname{Cos}(\delta+\phi)}
\]
so that at no-load \(\beta=\frac{\pi}{2}-(\delta+\phi)\) or \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) at the beginning of the range are nearer to opposition for both types than when the load is non-inductive, and as \(\operatorname{Cos} \phi \operatorname{Cos}(\delta+\phi)\) is less than unity, the successive increments to \(\operatorname{Cot} \beta\) for definite fractions of the load will be greater; hence for both types of transformers the approach to opposition of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) will be more marked with inductive than with non-inductive loads.

\section*{SECTION II.}
27. The theory developed in Section I. is easily applicable to the design of a closed-circuit transformer, when the full load, power factor of the load, periodicity, and e.m.f.'s are given.

In the first place we would select the form of the magnetic circuit, and after consideration of the probable cooling surface,
volume, and method of cooling to be adopted, decide on the permissible copper and iron losses per unit volume.

If K be the copper loss decided on, per second, per unit volume, at full load, then
\(\mathrm{K}=\frac{1}{2} \rho c^{2}\),
whence \(c\), the amplitude of the full-load current density, is known, \(\rho\) being the specific resistance of copper at the expected working temperature.

When the iron loss per second, per unit volume, (I. say) is given, the corresponding retardation \(\delta\), permeability and flux density can be got from curves similar to those in Fig. I., that have been obtained from a sample of the iron to be used with (\(q . p\).) sine wave magnetising currents whose period was the given one.

If \(\gamma\) be the flux density (\(=\mathrm{B}\) the abscissae in Fig. I.), then we should have between these quantities the relation,
\[
\frac{w^{2} \gamma^{2} \operatorname{Sin} \delta}{8 \pi \mu}=\text { I. }(\operatorname{see} \S 1) .
\]

Once the form of the magnetic circuit has been selected, its dimensions can be completely specified by two variables. The output at full load, \(\mathrm{P}_{2}\) say, can be expressed in terms of these two variables, for \(\mathrm{P}_{2}^{\prime}\), the power passed down to the secondary and developed in it, is given by the equation,
\[
\begin{equation*}
\mathrm{P}_{2}^{\prime}=\frac{1}{2} w n_{2} \mathrm{C}_{2} \mathrm{~F} \operatorname{Cos} \phi^{\prime} \tag{I.}
\end{equation*}
\]
and \(\mathrm{F}=\) iron section \(\times\) permissible flux density \((\gamma)\),
\(n_{2} \mathrm{C}_{2}=\) total copper section \(\times\) permissible current density at full load (c).
\(\mathrm{P}_{2}^{\prime}\) can be obtained from \(\mathrm{P}_{2}\) the given output, and \(\operatorname{Cos} \phi^{\prime}\) from \(\operatorname{Cos} \phi\), the given power factor of the load, by the equations,
\[
P_{2}^{\prime}=\left\{1+\frac{\theta_{z}}{\tau}\right\} P_{2}
\]
\[
\text { and } \tan \phi^{\prime}=\tan \phi+\left\{x_{2}-\frac{\tan \phi}{\tau}\right\} \theta_{x}
\]
\[
\text { or } \quad \operatorname{Cos} \phi^{\prime}=\operatorname{Cos} \phi\left\{1-\left(x_{2}-\frac{\tan \phi}{\tau}\right) \operatorname{Sin} \phi \operatorname{Cos} \phi \theta_{z}\right\}
\]
where \(\theta_{z}\) is the full load value of \(\theta\), when approximate values of the transformer numeric and of the secondary leakage coefficient are known.
[In future \(\tau\) will be used for either \(\tau_{1}\) or \(\tau_{2}\) when approximate values only are required].

The approximate value of \(\tau\) required may be found by a rough preliminary calculation, or from a formula such as that given in § 55 , when \(\tau\) for some other transformer of the same type is known, and \(\theta_{x}\), the fall load value of \(\phi\), taken as given by the equation (see \(\$ 817\)),
\[
\theta_{z} \operatorname{Cos} \phi=\sqrt{\frac{\overline{\operatorname{Sin} \delta}}{\mathrm{T}}}=\sqrt{\frac{\overline{z \pi \operatorname{Sin} \delta}}{2}}
\]
where \(z\) is the chosen ratio of copper to iron losses at full load.
In Section III, of this paper will be shown how to determine the leakage coefficients when the form of the magnetic circuit, method of winding, and space factors, are known. As these details will be decided on in the first place, a fairly accurate preliminary value of \(x_{2}\) can be obtained, and hence the value of \(\operatorname{Cos} \phi^{\prime}\) by means of either of the equations given above.

Thus we can obtain from equation \(T\). above the product of the section of the iron circuit by the total section of the secondary copper circuit.

Obviously, as a first approximation we might in equation I. consider \(\mathrm{P}_{2}^{\prime}=\mathrm{P}_{2}\) and \(\operatorname{Cos} \phi^{\prime}=\operatorname{Cos} \phi\), which would amount to neglecting secondary leakage and secondary copper loss.

A second relation between the two variables is obtained by expressing the condition that, at full load, the ratio of the copper to the iron losses is to have a definite chosen value \(z\).

If \(z\) be chosen as unity for a transformer that is to operate a non-inductive load, or as
\[
1-\operatorname{Sin} \phi\left\{x_{2} \operatorname{Sin} \delta-\frac{\operatorname{Cos} \delta}{\tau}\right\} \sqrt{\frac{2 \tau}{\operatorname{Sin} \delta}}
\]
(using the approximate value of \(\tau\)) for one that is to operate an inductive luad whose power factor is \(\operatorname{Cos} \phi\), then in either case full load would correspond with maximum efficiency (see § 16).

As the efticiency of a transformer keeps very near its maximum value for a wide range on either side of the maximum position, it is not a matter of great importance to arrange that maximum efficiency exactly corresponds to full load.

As copper costs more than iron it may be more economical to use a relatively smaller quantity of copper, and put up with a larger copper loss than when \(z=1\).

From these two relations the two variables, and hence the dimensions of the transformer, are determined, and the formulae in Section I, enable us to arrive at the different details such as \(n_{1}, n_{2}, a_{1}, a_{2}, r_{1}, r_{2}, \tau_{1}, \tau_{2}\), etc., when the e.m.f.'s on the primary and secondary sides are given.
28. As an illustration of this method I will work out the theoretical \({ }^{*}\) design of transformer, to transform from 2200 to 220 virtual volts at 50 periods, and to carry an inductive load of 10 K . W. whose power factor is . 8 .

Selecting the shell type of transformer, one of the laminae of which is shaped as in Fig. 厄, we will suppose the iron tongue to be of square cross section \((2 \beta, 2 \beta)\) and the windows or winding apertures to be also square \((2 b, 2 b)\). \(\dagger\)

Hence the mean length of the magnetic circuit is \(4(2 b+\beta)\), and the mean length of a turn of either primary or secondary coil (\(s\) o wound as to be the same for both) is \(8(b+\beta)\).

If \(p \ddagger\) the space factor of the iron be taken \(=.9\), then the cross section of the iron circuit is \(=4 p \beta^{3}=3.6 \beta^{2}\), and the volume of the iron
\(=16 p \beta^{2}(2 b+\beta)=14.4 \beta^{2}(2 b+\beta)\).
The space factor \(p\) will not only enable us to allow for insulation between the laminae, but also for ventilating or cooling ducts, if such are deemed necessary.

Let us decide that the iron loss shall be \(10^{5}\) ergs. per second, per unit volume.

With a sample of transformer iron .045 cm . thick I have found with my wave tracer, \(\|\) when the iron loss per cm. \({ }^{3}\) per second was \(10^{5}\) ergs. at 50 periods, the magnetising current wave form being slightly peaked, that
\[
\gamma=4800, \delta=52^{\circ} \mu=2250 \text { (q.p.) }
\]
so for the present design I will assume, for the iron to be used,

\footnotetext{
* Called theoretical because the details are fully worked out in accordance with the theory already given. A knowledge of the theory and experience will, however, enable one to make sufficiently accurate allowance for most of the small correcting terms, instead of having to calculate them in each particular case.
\(\dagger\) This is far from being the most efficient shape, as will be shown in Section III.
\(\ddagger\) The different factors and constants assumed are not given with any authority. The purpose of this part of the paper is merely illustrative.
}
\| Phil. Mag., Nov., 1903.
that
\[
\gamma=4847, \delta=50^{\circ} \mu=2250,
\]
which satisfy the sine wave equation
\[
\frac{2 \gamma^{2} \operatorname{Sin} \delta}{8 \pi \mu}=10^{5}
\]
whel states that the iron loss per \(\mathrm{cm} .{ }^{3}\) per second is \(10^{5}\) ergs.
The core loss will therefore be \(144.10^{4} \beta^{2}(2 b+\beta)\) at full load.
29. The kind of winding to be adopted will depend on the excellence of regulation for inductive loads that is required. In Section III. will be shown how to calculate the leakage coefficients for different kinds of windings, and how the regulation for inductive loads that these windings will give, may with considerable accuracy be predetermined.

A very important consideration with regard to the arrangement of the windings is clearly shown by the general expression for the efficiency given in \(\S 15\). It wili be seen that in the denominator, positive terms depending on \(x_{2}\), the leakage coefficient of the secondary, occur, of the first order in small quantities for inductive loads, and of the second order for noninductive loads. Hence it is obvious that if we have a choice, we should so place the secondary windings or sections that \(x_{2}\) is the least possible. Now it will be shown in Section III. that, with interleaved windings symmetrically arranged with regard to the middle line across the window, which line must therefore bisect the central section of one of the coils, the leakage coefficient of that coil to which the two outer sections belong is negative. Hence the most efficient arrangement is that in which the two outer sections belong to the secondary or output coil. The regulation will be the same whether one or other of the coils has the outer positions, as it depends on \(x_{1}+x_{2}\), which is little or not at all affected by the interchange.

Assuming that for the present design a winding in three sections will give satisfactory regulation, we will place the whole primary coil as a single section in the central position between the two halves of the secondary coil.

For such a winding, when the iron and copper losses per \(\mathrm{cm}^{3}\), and the space factors are as we assume in this design, and wheu \(\mu=2250\) (see \(\S 51\)),
\[
\begin{aligned}
& x_{1}=.00129 \quad x_{2}=-.00024 \\
& x_{1}+x_{2}=.00105 .
\end{aligned}
\]
30. If \(\mathrm{K}_{1}\) and \(\mathrm{K}_{2}\) be the permissible copper losses per second per em. \({ }^{3}\) at full load, \(\mathrm{K}_{1}\) for the primary being decided on as say \(15.10^{4}\) ergs, and \(K_{2}\) differing from \(K_{1}\) by a small amount which will depend on how the copper losses are to be divided between the two coils ; then
\[
\mathrm{K}_{1}=\frac{1}{2} \rho c_{1}^{2}, \quad \mathrm{~K}_{2}=\frac{1}{2} \rho c_{2}^{2},
\]
where \(c_{1}\) and \(c_{2}\) are the amplitudes of the current densities, and \(\rho\) the specific resistance of copper at the expected working temperature.

Let us take \(\rho=1800 \mathrm{abs}\).
then \(\quad c_{1}=12.91 \mathrm{abs}\).
Let \(s_{1}, s_{2}\), be the sectional areas, \(l_{1}, l_{2}\) the mean turns, and \(q_{1}, q_{2}\) the space factors of the two coils; so that \(q_{1} s_{1}, q_{2} s_{2}\), are their total copper sections, and \(q_{1} s_{1} l_{1}, q_{2} s_{2} l_{2}\), their total copper volumes; then (see § 6) since \(l_{1}=l_{2}\),
\[
\frac{q_{1} s_{1}}{q_{2} s_{2}}=\tau_{\tau_{2}}^{\tau_{1}}=1+\kappa \text { say },
\]
where \(\kappa\) is a small quantity to be determined, depending on the current densities in the two coils at full load.

This equation, together with \(s_{1}+s_{2}=4 b^{2}\), give us the copper sections,
\[
\begin{aligned}
& q_{1} s_{1}=2 \mathrm{Q} b^{2}\left\{1+\frac{\mathrm{Q}}{2 q_{2}} \kappa\right\} \\
& q_{2} s_{2}=2 \mathrm{Q} b^{2}\left\{1-\frac{\mathrm{Q}}{2 q_{1}} \kappa\right\}
\end{aligned}
\]
where \(\mathrm{Q}=\frac{2 q_{1} q_{2}}{q_{1}+q_{2}}=\) the harmonic mean of \(q_{1}\) and \(q_{2}\).
Let us assume for the copper space factors
\[
\begin{aligned}
q_{1} & =.5, \quad q_{2}=.7 \\
\text { then } \mathrm{Q} & =.583 \\
\text { and } q_{1} s_{1} & =1.166(1+.42 \kappa) b^{2} \\
q_{2} s_{2} & =1.166(1-.58 \kappa) b^{2} .
\end{aligned}
\]
31. If we arrange so that the current densities in the two coils shall be equal at full load, then
\[
c_{1}=c_{2}, \quad \mathrm{~K}_{1}=\mathrm{K}_{2}
\]
and
\[
\begin{aligned}
& \frac{q_{1} s_{1}}{q_{2} s_{2}}=\frac{n_{1} \mathrm{C}_{1}}{n_{2} \mathrm{C}_{2}}=1+\frac{\operatorname{Sin}(\delta+\phi)}{\theta_{x} \operatorname{Cos} \phi}(\text { see } \S 13) \\
& \text { or } \kappa=\frac{\operatorname{Sin}(\delta+\phi)}{\theta_{z} \operatorname{Cos} \phi}
\end{aligned}
\]
where \(\mathrm{C}_{1}, \mathrm{C}_{2}\), and \(\theta_{z}\) are full load values.
In addition let us arrange that the copper and iron losses shall be equal at full load. Then (see § 17), as \(z=1\),
\[
\theta_{z} \operatorname{Cos} \phi=\sqrt{\frac{\operatorname{Sin} \delta}{T}}=\sqrt{\frac{\tau \operatorname{Sin} \delta}{2}}
\]
so that
\[
\kappa=\operatorname{Sin}(\delta+\phi) \sqrt{\frac{2}{\tau \operatorname{Sin} \delta}} .
\]

For the determination of \(\kappa\) and other small correcting terms, an approximate value of \(\tau\) must be known. We can easily obtain one by a rough preliminary calculation in which these correcting terms are neglected, or from the formula given in §55, when \(\tau\) for some other transformer of the same type is known.

The first method gives us \(\tau=6000\);
hence as
\[
\begin{aligned}
& \delta=50^{\circ}, \quad \operatorname{Sin} \delta=.766, \\
& \operatorname{Cos} \phi=.8, \quad \phi=37^{\circ},
\end{aligned}
\]
we find that,
\[
\begin{aligned}
& \theta_{z} \operatorname{Cos} \phi=48, \quad \theta_{2}=60, \\
& \kappa=.02, \quad \tau_{1} / \tau_{2}=1.02, \\
& \frac{\theta_{2}}{\tau}=.01
\end{aligned}
\]
and taking \(x_{2}=-.00024\) (see § 28),
\(\operatorname{Cos} \varphi^{\prime}=.808\) at full load (see \(\$ \$ 10,27\)).
Substituting the value of \(\kappa\) thus determined in the expressions for \(q_{1} s_{1}\), and \(q_{2} s_{2}\) we get
\[
q_{1} s_{1}=1.176 b^{3}, q_{2} s_{2}=1.153 b^{2} .
\]

Hence, the total volume of copper being
\[
=l\left(q_{1} s_{1}+q_{2} s_{2}\right)=8(b+\beta)\left(q_{1} s_{1}+q_{2} s_{3}\right),
\]
it is
\[
=18.63 b^{2}(b+\beta),
\]
and as the copper losses at full load are
\(=15.10^{4} \times\) volume,
they are
\[
=2795.10^{3} b^{2}(b+\beta)
\]
32. As we intend that the copper and iron losses shall be equal at full load,
\[
\frac{2795 b^{2}(b+\beta)}{1440 \beta^{2}(2 b+\beta)}=1(\text { see } \S<28,31) .
\]
or \(\frac{u+1}{u^{2}(u+2)}=.5152\)
where \(u=\beta / b\),
from which equation \(u\) (the positive root) can easily be determined by trial (using a slide rule) and is \(=1.151\),
hence \(\beta=1.1516\).
33. The output \(\mathrm{P}_{2}\), being 10 K .W., that is, \(10^{11}\) ergs. per second, and (see \(\S 13\)) as
\[
\mathrm{P}_{2}^{\prime}=\left\{1+\frac{\theta_{z}}{\tau}\right\} \mathrm{P}_{2}
\]
we find, using the approximate value for \(\frac{\theta_{z}}{\tau}\) given in \(\S 31\), that \(\mathrm{P}_{2}^{\prime}\), the total power developed in the secondary is
\[
=1.01 \cdot 10^{11}
\]
but \(\mathrm{P}_{2}^{\prime}=\frac{1}{2} \mathrm{E}_{2}^{\prime} \mathrm{C}_{2} \operatorname{Cos} \phi^{\prime}\)
\[
=\frac{1}{2} w n_{2} \mathrm{FC}_{2} \operatorname{Cos} \phi^{\prime} ;
\]
hence, using the value of \(\operatorname{Cos} \phi^{\prime}\) given in \(\S 31\), and remembering that \(z=2 \pi .50=100 \pi\),
\[
\begin{aligned}
n_{2} \mathrm{C}_{2} \mathrm{~F} & =\frac{202 \cdot 10^{9}}{100 \pi \cdot .808} \\
& =796 \cdot 10^{6}
\end{aligned}
\]

Now \(c_{2}\) being the permissible current density \(=12.91\) (see \(\$ 30\))
\[
\begin{aligned}
n_{2} \mathrm{C}_{2} & =c_{2} q_{2} s_{2}=12.91 \cdot 1.153 b^{2} \\
& =14.9 b^{2}
\end{aligned}
\]
and \(\gamma\) being the permissible flux density \(=4847\),
\[
\begin{aligned}
\mathrm{F} & =4 p \beta^{2} \gamma=3.6 \cdot 4847 \cdot \beta^{2}, \\
& =17450 \beta^{2} .
\end{aligned}
\]

Hence \(b^{2} \beta^{2}=\frac{796 \cdot 10^{6}}{14.9 \cdot 17450}=3062\)
and as \(\beta=1 \cdot 1\) 51 \(b\)
we find that \(\beta=7.98\) and \(b=6.93\),
which determine the carcass of the transformer.

Substituting these values of \(\beta\) and \(b\) in the expressions for the copper and iron losses at full load given in \(\$ \Omega 31,28\), we find that each is equal to \(200.3 \cdot 10^{7}\), that is to 200.3 watts.

Hence the efficiency at full (inductive) load of 10 K .W. will be
\[
\frac{10000}{10400.6} \text { or } 96.15 \text { per cent. }
\]
34. The numerics \(\tau_{1}\) and \(\tau_{2}\) can now be determined for as
\(\tau_{1}=4 \pi \tau \cdots \times\) Conductance of primary copper belt \(\times\) Permeance of magnetic circuit
\[
\begin{aligned}
& \tau_{1}=4 \pi w \frac{q_{1} s_{1}}{8(b+\beta) \rho} \frac{4 p \beta^{2} \mu}{4(2 b+\beta)} \\
&=\frac{400 \cdot \pi^{2} \cdot 1.176 \cdot 48.08 \cdot 3.6 \cdot 63.7 \cdot 2250}{8 \cdot 14.91 \cdot 1800 \cdot 4 \cdot 21.84}, \\
&=6140, \\
& \text { and as } \tau_{1}=1.02 \tau_{2}, \\
& \tau_{2}=6020 .
\end{aligned}
\]

From the results already obtained the accurate full load value of \(\theta_{z} \operatorname{Cos} \phi\) can now be calculated by means of the formula in \(\S 17\), remembering that \(z=1\).

Thus we get at full load
\(\theta_{2} \operatorname{Cos} \phi=47.75\).
35. To deternine \(n_{1}\) the number of primary turns, we have (see § 13),
\[
\varkappa n_{1} \mathrm{~F}=\frac{M}{\mathrm{D}} \mathrm{E}_{1}
\]
where M and D are the full load values of the expressions for them given in \(\$ 12\). These can now be obtained as all the quantities required for their calculation are known.

Thus \(\mathrm{M}=1, \mathrm{D}=1.044\), and as
\[
\begin{aligned}
& \mathrm{F}=17450 \beta^{2}=1111.10^{+}(\text {see } 33), \\
& \mathrm{E}_{1}=2200 \cdot 1.414 \cdot 10^{8}, \\
& w=100 \pi,
\end{aligned}
\]
we find that \(n_{1}=854\).
36. To determine \(n_{2}\) the number of secondary turns, so that at full load the secondary e.m.f. shall be 220 volts.

From \(\$ 13\),
\(\mathrm{E}_{2}=\frac{n_{2} \mathrm{E}_{1}}{n_{1} \mathrm{D}}\)
or \(n_{2}=\begin{aligned} & n_{1} \mathrm{D} \\ & 10\end{aligned}\)
and as \(\mathrm{D}=1.044\) (see \(\S 35\)),
\(n_{2}=89.16\).
37. The sectional area of the conductors to be used being
\(\frac{q_{1} s_{1}}{n_{1}}\) and \(\frac{q_{2} s_{2}}{n_{2}}\),
for the primary and secondary respectively, we find (see \(\$ \$ 31\), 33),

Sect. area of primary conductor \(=0.0662 \mathrm{~cm}^{2}\),
Sect. area of secondary conductor \(=0.6218 \mathrm{~cm}^{2}\).
The mean length of a turn of either coil being
\(=8(b+\beta)=119.3\)
and as \(\rho=1800\),
the resistances of the coils (warrn) are
Primary, \(\quad 2.77\) ohms.
Secondary, 0.0308 ohms.
38. The terminal voltage at no load being (see \(\$ 13\))
\(\frac{n_{2}}{n_{1}} \frac{\mathrm{E}_{1}}{1+x_{1} \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{1}}}\)
is \(=229.5\) volts,
and as it is 220 volts at full inductive load the drop will be
4.14 per cent.

If the same transformer operated a non-inductive load it would be rated as of
\(\frac{10}{.8}=12.5 \mathrm{~K} . \mathrm{W}\). capacity,
and its voltage drop from no load to a non-inductive load of 12.5 K .W. would be 1.5 per cent.
39. By means of the formulae obtained in Section I. the curves shown in Fig. 3 and Fig. 4 were constructed for the
transformer we have designed. Those in Fig. 3 refer to it when operating the kind of load for which it was designed, namely, one with a constant power factor of .8 , while those in Fig. 4 refer to the same transformer when operating a non-inductive load. A comparison of these theoretical curves with similar ones obtained practically from actual transformers will afford a further illustration of the agreement between the theory I have given and practice.
40. In the preceding design it was arranged that the current densities in the two coils should be equal at full load. Any other desired distribution of current density, however, can be equally well dealt with.

Thus if \(\mathbf{K}_{1}\) and \(\mathrm{K}_{2}\), the copper losses per cmi at full load, be each given, we know \(c_{1}\) and \(c_{2}\) as \(\mathrm{K}=\frac{1}{2} \rho c^{2}\), and
\[
\frac{q_{1} s_{1} c_{1}}{q_{2} s_{2} c_{2}}=\frac{n_{1} \mathrm{C}_{1}}{n_{2} \mathrm{C}_{2}}=1+\kappa
\]
\(\kappa\) is determined as in \(\S 30\), by aid of an approximate value of \(\tau\), so that the ratio
\[
\frac{q_{1} s_{1}}{q_{2} s_{2}} \text { can be found; }
\]
and as \(s_{1}+s_{2}=4 b^{2}\) we can determine \(s_{1}\) and \(s_{2}\) and proceed as before.

Again if \(K_{1}\) be given, and we wish to arrange so that at full load the primary and secondary copper losses shall be equal, we have
\[
\begin{aligned}
& \frac{q_{1} s_{1} c_{1}}{q_{2} s_{2} c_{2}}=1+\kappa \quad \text { (as above), } \\
& \text { and } q_{1} s_{1} 1_{1} \mathrm{~K}_{1}=q_{2} s_{2} / l_{2} \mathrm{~K}_{2} \\
& \text { or } q_{1} s_{1} c_{1}{ }^{2}=q_{3} s_{9} c_{2}^{2} \\
& \text { as } l_{1}=l_{2} \text { and } \mathrm{K}=\frac{1}{2} \rho c^{2} \\
& \text { hence } \frac{q_{1} s_{1}}{q_{2} s_{1}}=(1+\kappa)^{2} \text {, } \\
& \text { which with } s_{1}+s_{2}=4 b^{2} \\
& \text { determine } s_{1} \text { and } s_{2} \text { and we proceed as before. } \\
& \text { In transformers of the core or } \mathrm{H} \text { type, in which the primary } \\
& \text { coil alnost completely surrounds the secondary, } l_{1} \text { is greater than } \\
& l_{2} \text {, and the preceding method would have to be moditied. }
\end{aligned}
\]

When \(s_{1}\) and \(s_{2}\) have been determined as before, \(l_{1}\) and \(l_{2}\) can be expressed in terms of the two variables \(b\) and \(\beta\), and the ratio of the losses
\(q_{1} s_{1} l_{1} \mathrm{~K}_{1}+q_{2} s_{2} l_{2} \mathrm{~K}_{2}\)
I (volume of iron)
being equated to the selected value \(z\) gives us an equation, slightly more complex than that for a shell transformer, for determining \(\beta / b\) and the rest follows as in the preceding cases.
41. When we select for the section of the iron tongue and for the windows or winding apertures different shapes from that selected in \(\S 28\), the method of procedure is fairly obvious. In general if \(2 \beta, 2 \beta^{\prime}\), be the section of the tongue, \(2 \beta^{\prime}\) being measured perpendicular to the planes of the laminae ; and if \(2 b, 2 b^{\prime}\), be the dimensions of the window \(2 b^{\prime}\) being measured parallel to the tongue;
the volume of iron \(\quad=16 p \beta \beta^{\prime}\left(b+b^{\prime}+\beta\right)\)
and the volume of copper \(=16 \mathrm{Q} b b^{\prime}\left(\beta+\beta^{\prime}+2 b\right)\)
[neglecting the small correcting terms in \(\kappa\) depending on the distribution of current densities in the two coils], where \(p\) and \(Q\) have the same signification as before, and if the iron and copper losses are to be equal at full load
\[
\frac{b b^{\prime}\left(\beta+\beta^{\prime}+2 b\right)}{\beta \beta^{\prime}\left(b+b^{\prime}+\beta\right)}=\frac{p \mathrm{I}}{\mathrm{QK}}=\frac{.9 \cdot 10^{5}}{.583 \cdot 15 \cdot 10^{4}}=1.029
\]
if we adopt the same values for the data as before.
The values of \(\beta / b\) for a few special shapes are as follows :-
(a) If \(b=b^{\prime}, \quad 2 \beta^{\prime}=3 \beta\),
\[
\beta / b=.984 .
\]
(b) If \(b=b^{\prime}, \quad \beta^{\prime}=2 \beta\),
\[
\beta / b=.886 \text {. }
\]
(c) If \(2 b^{\prime}=3 b, \quad 2 \beta^{\prime}=3 \beta\),
\[
\beta / b=1.141 .
\]
(d) If \(2 b^{\prime}=3 b, \quad \beta^{\prime}=2 \beta\),
\[
\beta / b=1.025 .
\]
(e) If \(b^{\prime}=2 b, \quad 2 \beta^{\prime}=5 \beta\),
\[
\beta / b=1.042 .
\]

Let us determine approximate values of \(\tau\) for transformers of the above shapes whose output on non-inductive load shall be 12.5 K.W. at 50 periods, the normal rating of the transformer already designed.

We have (see §33)
\(\frac{1}{2} w n_{2} \mathrm{C}_{2} \mathrm{~F}=12.5 .10^{10}+\) Secondary copper loss, and the secondary copper loss may in this connection be neglected in a rough determination of \(\tau\); but
\[
\begin{aligned}
n_{3} \mathrm{C}_{3} & =c_{2} \cdot \frac{\mathrm{Q}}{2} \cdot 4 b b^{\prime}=15.05 b b^{\prime}, \\
\mathrm{F} & =\gamma \cdot \not p \cdot 4 \beta \beta^{\prime}=17450 \beta \beta^{\prime},
\end{aligned}
\]
taking the values \(c_{2}=12.91, \gamma=4847\) already used ; hence
\[
b b^{\prime} \beta \beta^{\prime}=\frac{12.5 \cdot 10^{10}}{50 \pi \cdot 15.05 \cdot 17450}=3030
\]
which with the ratios \(\beta / b\) above enables us to determine \(\beta\) and \(b\) in each case.

The formula for the numeric \(\tau\) can be put in the form
\[
\tau=\frac{\pi \mu}{2 \rho c \gamma} \frac{\text { Output }}{\left(\beta+\beta^{\prime}+2 b\right)\left(b \pm b^{\prime}+\beta\right)}=\begin{gathered}
3,925.000 \\
\left(\beta+\beta^{\prime}+2 b\right)\left(b+b^{\prime}+\beta\right)
\end{gathered}
\]
by means of which its values in the five special cases considered can be determined.

Thus we obtain the following details given in tabular form.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & (a) & (b) & (c) & (d) & (e) \\
\hline 6 & 6.76 & 6.63 & 5.67 & 5.57 & 4.86 \\
\hline \(b^{\prime}\) & 6.76 & 6.63 & 8.50 & 8.35 & 9.72 \\
\hline \(\beta\) & 6.65 & 5.87 & 6.47 & 5.71 & 5.06 \\
\hline \(\beta^{\prime}\) & 9.97 & 11.74 & 9.70 & 11.42 & 12.65 \\
\hline Volume of copper & \(\} 12840\) & 12660 & 12450 & 12080 & 12090 \\
\hline Volume of iron & \(\} 19250\) & 18990 & 18680 & 18420 & 18140 \\
\hline \(\tau\) & 6460 & 6650 & 6910 & 7080 & 7280 \\
\hline
\end{tabular}

We also find that the iron losses at full load, which are half the total losses, are for (a) 192.5, (b) 189.9, (c) 186.8, (d) 184.2, and (e) 181.4 watts, so that transformer (e) is the most efficient of the series, having an efficiency at full load of 97.2 per cent. Obviously the transformer designed in detail with square windows and square tongue is of a less efticient shape than any of these, as its iron loss at full load is 200.3 watts.

The volume of iron in each of the present series in cub. cms. is 100 times the iron loss in watts. In (e) it is 18140 cub. cms.,
which corresponds to 25 lbs. of iron core for each kilowatt of full load activity.

It is worth noting that, for transformers of the same type made of similar iron, the percentage iron and copper losses and the weights of copper and iron per kilowatt of full load activity, are inversely proportional to the fourth root of the product of the output into the frequency.

\section*{Section III.}

\section*{Transformer Leakage.}
42. In addition to the magnetic lines forming the main flux \(\bar{F}\), produced by the combined action of \(\overline{\mathrm{C}}_{1}\) and \(\overline{\mathrm{C}}_{2}\) and looped on both circuits of a transformer, there are other lines, the leakage lines, that are only partially looped on the two coils and that traverse the space occupied by the coils, in some cases completing their circuits in the iron. It will be shown that, after the transformer is somewhat loaded, the effect of these leakage lines on its operation is the same as would be produced by two fluxes; one, the primary leakage flux, supposed to consist of lines in phase with the primary current that are looped on the primary and miss the secondary circuit, and the other, the secondary leakage flux, suppposed to consist of lines in phase with the secondary current, that are looped on the secondary and miss the primary circuit.
43. Let \(\mathrm{L}_{1}\) and \(\mathrm{L}_{2}\) be the inductances of the two coils when the leakage lines only are considered, \(\mathrm{M}_{12}\) the mutual iuductance of the primary on the secondary, that is the number of leakage lines looped on the secondary arising from unit current in the primary, and \(\mathrm{M}_{21}\) the mutual inductance of the secondary on the primary. (\(\mathrm{M}_{12}\) will not in general be equal to \(\mathrm{M}_{21}\)).

The e.m.f. \(\bar{c}_{1}\) generated in the primary coil by variation of the leakage lines due to \(\overline{\mathrm{C}}_{1}\) and \(\overline{\mathrm{C}}_{2}\) will be represented by the vector
\[
\overline{w \mathrm{~L}_{1} \mathrm{C}_{1}+z^{\prime} \mathrm{M}_{21} \mathrm{C}_{2}}
\]
after it has been turned through a right angle in the negative direction : but since the vector
\[
\overline{n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}
\]
which represents the magnetising ampere turns, is, after the
transformer is somewhat loaded, negligible in comparison with

\[
\overline{\mathrm{C}}_{2}=-\frac{n_{1}}{n_{1}} \mathrm{C}^{1}
\]
and hence \(\bar{e}_{1}\) is the vector
\[
w\left\{\frac{\mathrm{~L}_{1}}{n_{1}}-\frac{\mathrm{M}_{21}}{n_{2}}\right\} n_{1} \overline{\mathrm{C}_{1}},
\]
after it has been turned back through a right angle and
\[
\text { amp. } e_{1}=w\left\{\begin{array}{l}
\mathrm{L}_{1} \\
n_{1}
\end{array}-\frac{\mathrm{M}_{21}}{n_{2}}\right\} n_{1} \mathrm{C}_{1}
\]

Thus we see that the effect of the leakage lines on the primary circuit is the same, when the transformer carries a load, as would be produced by a flux
\[
=\left\{\frac{\mathrm{L}_{1}}{n_{1}}-\frac{\mathrm{M}_{21}}{n_{2}}\right\} \mathrm{C}_{1}
\]
looped on it but not on the secondary; but in § 2 this flux was specified by \(x_{1} \sigma n_{1} \overline{\mathrm{C}}_{1}\)
where \(x_{1}\) is the primary leakage coefficient, and \(\sigma\) is \(4 \pi\) times the permeance of the magnetic circuit, hence
\[
x_{1}=\frac{1}{n_{1} \sigma}\left\{\frac{\mathrm{~L}_{1}}{n_{1}}-\frac{\mathrm{M}_{21}}{n_{2}}\right\} .
\]

Similarly if \(x_{2}\) be the secondary leakage coefficient
\[
x_{2}=\frac{1}{n_{2} \sigma}\left\{\frac{\mathrm{~L}_{2}}{n_{2}}-\frac{\mathrm{M}_{12}}{n_{1}}\right\} .
\]
44. Let us determine \(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{M}_{12}, \mathrm{M}_{21}\) and thence \(x_{1}\) and \(x_{2}\) for a shell transformer in which both primary and secondary coils are single.

This must be done in two parts. We must determine the values of those portions of the above coefficients that are due to the leakage lines that cross the windows, as well as the values of their remaining portions that are due to the leakage lines that cross those parts of the coils that are not embedded in the iron. Let \(\mathrm{L}_{1}^{\prime}, \mathrm{L}_{2}^{\prime}, \mathrm{M}_{12}^{\prime}, \mathrm{M}_{21}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\) be the former, and \(\mathrm{L}^{\prime \prime}, \mathrm{L}^{\prime \prime}\), etc., the latter portions of the above coefficients.

Let \(2 \beta\) be the width of the iron tongue measured in the plane of one of the laminae from window to window, and let \(2 \beta^{\prime}\) be its heıght measured perpendicular to the laminae. Also (see Fig. 5) let \(\mathrm{PP}^{\prime}\) the breadth of the window \(=\mathrm{D}, \mathrm{PO}\) the thickness
of the primary coil \(=b_{1}\), and SO the thickness of the secondary coil \(=b_{2}\).

In order to determine \(L_{1}^{\prime}, L_{2}^{\prime}\), etc., consider first the leakage lines producea by \(C_{1}\) that cross the windows through the spaces occupied by the primary coil.

If we draw two planes \(\mathrm{A}^{\prime} \mathrm{A}, \mathrm{B}^{\prime} \mathrm{B}\), Fig. 5, the same distance \(z\) on either side of the median plane of the primary, the magnetic forces due to the two portions of the primary coil AP and BO neutralize each other within the space \(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\), so that the M.M.F. round the circuit \(\mathrm{A}^{\prime} \mathrm{ABB}^{\prime}\) is due to the portion of the primary it encloses and is
\[
=\frac{8 \pi n_{1} \mathrm{C}_{1}}{b_{1}} z,
\]
and the flux circulating in this circuit through the elemental rectangle \(2 \beta^{\prime} d z\) at \(z\) is
\[
=\frac{8_{\pi \cdot \beta^{\prime}}}{\mathrm{D} b_{1}} n_{1} \mathrm{C}_{1} z d z
\]
as it crosses the window twice.
This flux encircles the current
\[
\frac{n_{1} \mathrm{C}_{1}}{b_{1}}{ }_{2}
\]
and as the energy associated with naturally looped flux and current is \(\frac{1}{2}\) flux \(\times\) current, the energy of \(\mathrm{C}_{1}\) due to the lines through the space occupied by the primary coil is
\[
\begin{align*}
& =\frac{8 \pi \beta^{\prime}}{\mathrm{D} b_{1}^{2}} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2} \int^{\frac{b_{1}}{2}}{\frac{z^{2}}{}}_{0^{\prime}} d z \\
& =\frac{\pi}{6} \frac{2 \beta^{\prime} b_{1}}{\mathrm{D}} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2} \tag{I.}
\end{align*}
\]

Thus we see that the energy of \(\mathrm{C}_{1}\) due to the leakage lines that cross and recross the space occupied by the coil carrying \(\mathrm{C}_{1}\) is equal to \(\frac{\pi}{6} n_{1}^{2} \mathrm{C}_{1}^{2} \times\) permeance of this space across the window.

Again the M.M.F. due to \(\mathrm{C}_{1}\), in any circuit that crosses the space occupied by the secondary coil, and completes itself through the iron round the primary coil is uniform, and \(=4 \pi n_{1} \mathrm{C}_{1}\) and sends through the secondary space (section \(2 \beta^{\prime} b_{2}\)) the flux
\[
\frac{8 \pi \beta^{\prime} n_{1} \mathrm{C}_{1}}{\mathrm{D}} b_{2}
\]
(neglecting the reluctance of the iron).
This flux encircles all of \(n_{1} \mathrm{C}_{1}\) and the energy associated with it is
\[
\frac{4 \pi \beta^{\prime}}{\mathrm{D}} n_{1}{ }^{2} \mathrm{C}_{1}^{2} b_{2}
\]
so that the total energy of \(\mathrm{C}_{1}\) due to the leakage lines it produces and that cross the window is
\[
=\frac{1 \pi \beta^{\prime}}{\mathrm{D}}\left\{b_{2}+\frac{b_{1}}{12}\right\}^{2} n_{1}^{2} \mathrm{C}_{1}^{2}
\]

The other window contributes an equal amount, hence as the sum is also equal to \(\frac{1}{2} \mathrm{~L}_{1}^{\prime} \mathrm{C}^{2}\),
\[
\mathrm{L}_{1}^{\prime}=\frac{16 \pi \beta^{\prime}}{\mathrm{D}}\left\{b_{1}+\frac{b_{1}}{12}\right\} n_{1}{ }^{2}
\]

Similarly,
\[
\begin{equation*}
\mathrm{L}_{2}^{\prime}=\frac{16 \pi \beta^{\prime}}{\mathrm{D}}\left\{b_{1}+\frac{b_{2}}{12}\right\}^{n_{2}^{2}} \tag{II.}
\end{equation*}
\]

The latter of the two fluxes already considered is partially looped on \(n_{2} \mathrm{C}_{2}\) and the mutual energy of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) due to this can easily be found as follows.

The flux through \(2 \beta^{\prime} d y\) where \(y=\) OE, Fig. 5 , is
\[
=4 \pi n_{1} \mathrm{C}_{1} \frac{2 \beta^{\prime} d y}{\mathrm{D}},
\]
and it is looped on the portion
\[
\frac{n_{2} \mathrm{C}_{2}}{h_{2}} y \text { of } n_{2} \mathrm{C}_{2}
\]
so that the mutual energy is
\[
=\frac{8 \pi \beta^{\prime}}{\mathrm{D} b_{2}} n_{1} n_{2} \mathrm{C}_{1} \mathrm{C}_{2} y d y .
\]

Integrating from \(y=o\) to \(y=b_{2}\) we find that the mutual energy of \(\mathrm{C}_{2}\) and the leakage lines due to \(\mathrm{C}_{1}\) is
\[
=\frac{4 \pi \beta^{\prime}}{\mathrm{D}} n_{1} n_{2} \mathrm{C}_{1} \mathrm{C}_{2} b_{2} .
\]

Thus we see that the mutual energy of the uniform \(C_{1}\) flux that goes through the \(\mathrm{C}_{2}\) coil, and \(n_{2} \mathrm{C}_{2}\) is
\[
\begin{equation*}
=\frac{1}{2} \text {. flux } \cdot n_{2} \mathrm{C}_{2} \text {. } \tag{III.}
\end{equation*}
\]
or is the same as if all the flux through the space were looped on half the total current in the space, a result that will be made use of in \(\S 45, b\).

Hence, as the other window contributes an equal amount of energy
\[
\begin{align*}
& \mathrm{M}_{{ }_{12}^{\prime}}^{\prime} \mathrm{C}_{1} \mathrm{C}_{2}=\frac{8 \pi \beta^{\prime}}{\mathrm{D}} n_{1} n_{2} \mathrm{C}_{1} \mathrm{C}_{2} b_{2} \\
& \mathrm{M}_{12}^{\prime}=\frac{8 \pi \beta^{\prime}}{\mathrm{D}} n_{1} n_{2} b_{2 \cdot} \tag{IV.}\\
& \text { Similarly, } \\
& \mathrm{MH}_{21}^{\prime}=\frac{8 \pi \beta^{\prime}}{\mathrm{D}} n_{1} n_{2} l_{1} .
\end{align*}
\]

Substituting from (II.) and (IV.) in the equations for \(x_{1}^{\prime}\) and \(x_{2}\) in \(\leftrightarrows 43\), we get
\[
\begin{align*}
& x_{1}^{\prime}=\frac{16 \pi \beta^{\prime}}{\sigma \mathrm{D}}\left\{b_{2}-\frac{5}{12} b_{1}\right\} \\
& x_{2}^{\prime}=\frac{16 \pi \beta^{\prime}}{\sigma \mathrm{D}}\left\{b_{1}-\frac{5}{12^{b_{2}}}\right\} \tag{V.}
\end{align*}
\]
and
\[
x_{1}^{\prime}+x_{2}^{\prime}=\frac{28 \pi \beta^{\prime}}{3 \sigma \mathrm{D}}\left\{b_{1}+b_{2}\right\}
\]

45. The determination of the coefficients \(x_{1 \prime \prime}\) and \(x^{\prime \prime}\) due to leakage lines other than those that cross the windows can only be approximate.

A fair approximation can, however, be obtained by assuming that these lines form circuits like \(a a^{\prime} c b^{\prime} b a\), Fig. 6 , of which \(b a\) is in the iron, as the inner surfaces of the coils bear against the iron tongue, \(a a^{\prime}\) and \(b b^{\prime}\) are parallel to the plane of separation of the coils and \(a^{\prime} c b^{\prime}\) is a semicircle in the air joining \(a^{\prime}\) and \(b^{\prime}\).

Let us consider the lines due to \(\mathrm{C}_{1}\).
If \(a a^{\prime}\) and \(b b^{\prime}\) are a distance \(z\) on either side of the median plane of the primary coil, then the M.M.F. round the circuit \(a a^{\prime} c b^{\prime} b a\) is
\[
=\frac{4 \pi n_{1} \mathrm{C}_{1}}{b_{1}} 2 z
\]
which will send through the magnetic circuit at \(z\), whose breadth is \(d z\) the flux
\(\frac{4 \pi n_{1} \mathrm{C}_{1}}{b_{1}} 2 z \frac{\mathrm{~B} d z}{2 \mathrm{D}+\pi z}\)
if B be the mean width perpendicular to \(d z\) of this elementary circuit. Now where the coil bears against the iron the width is
\(2 \beta\), and at the outer surface of the coil the width is \(2 \beta+\pi \mathrm{D}\), if we assume that the comers of the coil are quadrants of circles.

Hence \(\mathrm{B}=2 \beta+\frac{\pi}{2} \mathrm{D}\).
[This allowance for the corners of the coil nay be considered rather large, but if so it is compensated by the fringing of the lines crossing the windows, which has not been allowed for.]

Adding an equal amount for the other uncovered side of the coil, the flux across \(d z\) due to \(\mathrm{C}_{1}\) is
\[
\frac{16 \mathrm{~B}}{b_{1}} n_{1} \mathrm{C}_{1} \frac{z d z}{z+\frac{2 \mathrm{D}}{\pi}},
\]
and it is looped on
\[
\frac{n_{1} \mathrm{C}_{1}}{b_{1}} 2 z \text { of } n_{1} \mathrm{C}_{1}
\]
so that the energy associated with it is
\[
{ }_{b_{1}^{2}}{ }^{2} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2} \frac{z^{2} d s}{z+\frac{2 \mathrm{D}}{\pi}}
\]

Integrating this between the limits \(z=b_{1} / 2\) and \(z=0\) we get
\[
4 \mathrm{~B} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2}\left\{\frac{1}{2}-2 \lambda_{1}+4 \lambda_{1}{ }^{2} \log \frac{1+2 \lambda_{1}}{2 \lambda_{1}}\right\}, \quad \text { where } \lambda_{1}=\frac{2 \mathrm{D}}{\pi \bar{b}_{1}}
\]
which is the energy of \(\mathrm{C}_{1}\) due to its lines through the primary coil.

Again the energy of \(\mathrm{C}_{1}\) due to the lines it sends through the space occupied by the secondary coil is
\[
\begin{aligned}
& =4 \mathrm{~B} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2} \int_{\frac{b_{1}}{\frac{b_{1}}{2}}+b_{2}}^{\frac{d y}{2}+\frac{2 \mathrm{D}}{\pi}} \\
& =4 \mathrm{~B} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2} \log \frac{1+2 \lambda_{1}+2 \nu_{1}}{1+2 \lambda_{1}}
\end{aligned}
\]
where \(\nu_{1}=\frac{b_{2}}{b_{1}}\).
The sum of these two results being \(\frac{1}{2} \mathrm{~L}_{1}^{\prime \prime} \mathrm{C}_{1}{ }^{2}\)
\[
\mathrm{L}_{1}^{\prime \prime}=8 \mathrm{~B} n_{1}{ }^{2}\left\{\frac{1}{2}-2 \lambda_{1}+4 \lambda_{1}^{2} \log \frac{1+2 \lambda_{1}}{2 \lambda_{1}}+\log \frac{1+2 \lambda_{1}+2 \nu_{1}}{1+2 \lambda_{1}}\right\} .
\]

Similarly, if \(\lambda_{2}=\frac{2 \mathrm{D}}{\pi b_{2}}, \quad \nu_{2}=\frac{b_{1}}{b_{2}}=\frac{1}{v_{1}}\)
\[
\mathrm{L}_{2}^{\prime \prime}=8 \mathrm{~B} n_{2}^{2}\left\{\frac{1}{2}-2 \lambda_{2}+4 \lambda_{2}^{2} \log ^{1}+2 \lambda_{2}+\log _{5}^{1+2 \lambda_{2}+2 \nu_{2}} \frac{1+2 \lambda_{2}}{1}\right\}
\]

In a like manner we find that
\[
\begin{aligned}
& \mathrm{I}_{12}^{\prime \prime}=8 \mathrm{~B} n_{1} n_{2}\left\{1-\left(\lambda_{2}+\frac{1}{2} v_{2}\right) \log \frac{1+2 \lambda_{1}+2 v_{1}}{1+2 \lambda_{1}}\right\} \\
& \mathrm{M}_{{ }_{21}}^{\prime \prime}=8 \mathrm{~B} n_{1} n_{2}\left\{1-\left(\lambda_{1}+\frac{1}{2} v_{1}\right) \log \frac{1+2 \lambda_{2}+2 \nu_{2}}{1+2 \lambda_{2}}\right\}
\end{aligned}
\]
and substituting in the equations for \(x_{1}\) and \(x_{2}\) in \(\$ 43\)
\[
\left.\begin{array}{rl}
x_{1}^{\prime \prime}= & \frac{8 \mathrm{~B}}{\sigma}\left\{-\frac{1}{2}-2 \lambda_{1}+4 \lambda_{1}^{2}{ }_{1} \log { }^{1}+2 \lambda_{1}+\right. \\
2 \lambda_{1} & \log \frac{1+2 \lambda_{1}+2 v_{1}}{1+2 \lambda_{1}}+ \\
\left(\lambda_{1}+\frac{1}{2} \nu_{1}\right) \log 1+2 \lambda_{2}+2 v_{2} \\
1+2 \lambda_{2}
\end{array}\right\}
\]
\(x_{2}^{\prime \prime}=\frac{8 \mathrm{~B}}{\sigma}\left\{\right.\) Interchange \(\lambda_{1}\) and \(\lambda_{2}, v_{1}\) and \(v_{2}\) in above. \(\}\)
and finally for the leakage coefticients of the transformer
\[
\begin{aligned}
& x_{1}=x_{1}^{\prime}+x^{\prime \prime \prime}{ }_{1} \\
& x_{2}=x_{2}^{\prime}+x_{2}^{\prime \prime} .
\end{aligned}
\]
46. From the expressions in 44,45 , let us determine \(x_{1}\) and \(x_{2}\) for transformers with square windows and iron tongue of square cross section, and of which the secondary coil occupies three-fourths as much space as is occupied by the primary.

Then \(\mathrm{D}=b_{1}+b_{2}, \quad b_{1}=\frac{4}{7} \mathrm{D}, \quad b_{2}={ }_{7}^{3} \mathrm{D}\),
\[
\begin{aligned}
& \beta=\beta^{\prime}, \quad \nu_{1}=3 / 4, \quad \nu_{2}=4 / 3, \\
& \lambda_{1}=\frac{2 \mathrm{D}}{\pi b_{1}}=1.11, \quad \lambda_{2}=\frac{2 \mathrm{D}}{\pi b_{2}}=1.48
\end{aligned}
\]

From § 44 we get
\[
x_{1}^{\prime}=9.6 \frac{\beta}{\sigma}, \quad x_{2}^{\prime}=19.8 \frac{\beta}{\sigma},
\]
and from § 45
\[
x_{1}^{\prime \prime}=2 \frac{\mathrm{~B}}{\sigma}, \quad x_{2}^{\prime \prime}=\frac{7}{2} \frac{\mathrm{~B}}{\sigma} .
\]

Remembering that \(\mathrm{B}=2 \beta+\frac{\pi}{2} \mathrm{D}\), we find that
\[
\begin{aligned}
& x_{1}=x_{1}^{\prime}+x_{1}^{\prime \prime}=\frac{13.6 \beta+3.1 \mathrm{D}}{\sigma}, \\
& x_{2}=x_{2}^{\prime}+x_{2}^{\prime \prime}=\frac{26.8 \beta+5.5 \mathrm{D}}{\sigma}
\end{aligned}
\]

As \(\sigma=4 \pi \mu \cdot \frac{4 \beta^{2}}{4(\beta+\mathrm{D})}\),
and as, in a transformer shaped as we have supposed \(2 \beta\) will be very nearly 1.2 D ,
\[
x_{1}=\frac{4}{\mu}, \quad x_{2}=\frac{7.6}{\mu} .
\]

If we take \(\mu=2250\),
\[
\begin{aligned}
& x_{1}=.00178, \quad x_{2}=.00338 \\
& x_{1}+x_{2}=.005
\end{aligned}
\]
which in a \(10 \mathrm{~K} . \mathrm{W} .50\) period transformer, \(\tau=6000\), would give a drop on non-inductive load of 4.3 per cent., and on an inductive load of .8 power factor a drop of 18 per cent. approximately.
[Take \(\tau_{1}=\tau_{2}=\tau, y=\sqrt{\frac{\tau \operatorname{Sin} \delta}{2}}, \operatorname{Sin} \delta=.75\), in formula in \(\S 23\) for a rough estimate of the drop].
47. In order to determine \(x_{1}\) and \(x_{2}\) for a shell transformer with interleaved windings we have, as before, to determine \(x_{1}^{\prime}\) and \(x_{2}^{\prime}\) due to the lines that cross the windows, and \(x^{\prime \prime}, x^{\prime \prime}\), due to the remaining leakage lines, separately. We will first determine \(x_{1}^{\prime}\) and \(x_{2}^{\prime}\) in the general case. Let the sections of the two coils be arranged, as in Fig. 7, symmetrically, with regard to the median plane across the window so that a section of one of the coils occupies the central position in the window. Let the coil to which the central section belongs be called the even coil and its sections the even sections, and let the other coil be called the odd coil and its sections the odd sections. The even coil will have an odd number, \(i\) say, of sections, and the odd coil will have an even number, \(j\) say, of sections where \(j\) may be equal to either \(i-1\) as in Fig. 7, or to \(i+1\), in which case the two outer sections would be odd ones. Let \(b_{2}\), be the thickness of each of the even sections and \(b_{1}\) that of each of the odd ones ; and let \(\mathrm{L}_{2}, x_{2}, n_{2}\), \(\mathrm{C}_{2}\) refer to the even coil and \(\mathrm{L}_{1}, x_{1}, n_{1}, \mathrm{C}_{1}\), etc., to the odd one. Let \(2 \beta, 2 \beta^{\prime}\), be the section of the iron tongue, \(2 \beta^{\prime}\) being measured perpendicular to the laminae; and let D be the breadth of the window.

In Fig. 7 is a diagram of the window in which the sections are numbered in accordance with the above plan, the central section being numbered \(O\), and directly below is what we may call the M.M.F. diagram for \(C_{2}\) in which the zig-zag line

OP gives the distribution of M.M.F. in the different sections due to \(\mathrm{C}_{2}\).

Thus if the M.M.F. round the Central section O, that is \(\frac{4 \pi n_{2} \mathrm{C}_{2}}{i}\), be called \(m_{2}\),
the M.M.F. round the magnetic circuit \(1,1^{\prime}\), is \(m_{2}\), the M.M.F. round the magnetic circuit \(3,3^{\prime}\) is \(3 m_{2}\), and so on, so that the ordinate of OP opposite any odd section is proportional to the number of the section. And it is easily seen that the mean ordinate of \(O P\) opposite any even section is also proportional to the number specifying that section.

The flux per unit length across the window at any point in \(O Q\) is
\(=\) M.M.F. \(\frac{2 \beta^{\prime}}{2 \mathrm{D}}\)
and if \(m_{2}^{\beta^{\prime}} \overline{\mathrm{D}}\) i.e. \(\frac{4 \pi n_{2} \mathrm{C}_{2}}{i} \stackrel{\beta^{\prime}}{\beta^{\prime}}=f_{2}\)
it is easy to see that, due to \(\mathrm{C}_{2}\),
the total flux round the circuit \(1,1^{\prime}\), is \(f_{2} b_{1}\)
\[
\begin{array}{lllllll}
" & " & " & ", & " & " & 2,2^{\prime}, \text { is } 2 f_{2} b_{2} \\
" & " & " & " & " & " & 3,3, \text { is } 3 f_{i} b_{1}
\end{array}
\]
and so on.
(a) The energy of \(\mathrm{C}_{2}\) due to the leakage lines it sends through the even (its own) sections is, as we neglect the reluctance of the iron, the same as if the odd sections were removed and the even ones pushed up together.

By \(\S 44\), (I.), this energy is
\[
\begin{equation*}
=\frac{\pi}{6} \frac{2 \beta^{\prime} i b_{2}}{\mathrm{D}} n_{2}^{2} \mathrm{C}_{2}{ }^{2} . \tag{I.}
\end{equation*}
\]

The energy of \(\mathrm{C}_{2}\), due to the leakage lines it sends through the odd sections, is, by aid of Fig. 7 , found to be
\[
\begin{align*}
& =\frac{1}{2} f_{2} b_{1} \frac{n_{2} \mathrm{C}_{2}}{i}\left\{1^{2}+3^{2}+5^{2}++j-1^{2}\right\} . \\
& =\frac{2 \pi^{\prime} \beta^{\prime}}{\mathrm{D}} \frac{n_{2} \mathrm{C}_{2}{ }^{2}}{i^{2}} b_{1} \frac{j\left(j^{2}-1\right)}{6} \tag{II.}
\end{align*}
\]

This follows easily when it is noticed, Fig. 7, that the flux \(3 f_{2} b_{1}\) (for instance) round \(3,3^{\prime}\) is looped on three even sections, i.e., on the current \(3 n_{2} \mathrm{C}_{2} / i\), and similarly for the others.

Adding I. and II. we get the energy of \(\mathrm{C}_{2}\), due to the leakage lines it sends across one window. The other window contributes an equal amount, hence,
\[
\frac{1}{2} \mathrm{~L}_{2}^{\prime} \mathrm{C}_{2}^{2}=\frac{2 \pi \beta^{\prime}}{3 \mathrm{D}} n_{2}^{2} \mathrm{C}_{2}^{2}\left\{i b_{2}+\frac{j\left(j^{2}-1\right)}{i^{2}} b_{1}\right\},
\]
or
\[
\mathrm{L}_{2}^{\prime}=\frac{4 \pi \beta^{\prime}}{3 \mathrm{D}} n_{2}^{2}\left\{i b_{2}+\frac{j\left(j^{2}-1\right)}{i^{2}} b_{1}\right\} . \quad \text { (III.) }
\]
(b) The mutual energy of \(\mathrm{C}_{2}\) and \(\mathrm{C}_{1}\), due to the \(\mathrm{C}_{2}\) lines through the even spaces being looped on \(\mathrm{C}_{1}\), can be read off from Fig. 7, and is
\[
\begin{align*}
& =f_{2} b_{2} \frac{n_{1} \mathrm{C}_{1}}{j}\left\{2^{2}+4^{2}+6^{2}+\quad+\overline{i-1}^{2}\right\} \\
& =\frac{2 \pi \beta^{\prime}}{3 \mathrm{D}} n_{1} n_{2} \mathrm{C}_{1} \mathrm{C}_{2} \frac{i^{2}-1}{j} b_{2} . \tag{IV.}
\end{align*}
\]

The mutual energy of \(C_{2}\) and \(C_{1}\), due to the \(C_{2}\) lines through the odd spaces being looped on \(\mathrm{C}_{1}\) is
\[
\begin{align*}
& =f_{2} b_{2} \frac{n_{1} \mathrm{C}_{1}}{j}\left\{1^{2}+3^{2}+5^{2}++\overline{j-1}\right. \\
& =2\} \tag{V.}\\
& =\frac{2 \pi \beta^{\prime}}{3 \mathrm{D}} n_{1} n_{2} \mathrm{C}_{1} \mathrm{C}_{2} \frac{j^{2}-1}{i} b_{1} .
\end{align*}
\]
[This will be seen by considering circuit \(3,3^{\prime}\). The flux round it is \(3 f_{2} b_{1}\), and it completely encircles the two odd \(\mathrm{C}_{1}\) sections 1 and \(\mathrm{l}^{\prime}\), and partially the \(\mathrm{C}_{1}\) windings in 3 and \(3^{\prime}\). But in § 44, III., it was shown that the mutual energy due to a uniform flux encircling a uniformly distributed current occupying the same space, was the same as if the whole flux encircled half the current ; hence, in this case, the energy contributed by 3 and \(3^{\prime}\) is the same as if the flux \(3 f_{\mathrm{i}} b_{1}\) encircled one only of them completely, so that altogether the flux \(3 f_{2} b_{1}\) encircles \(3 n_{1} \mathrm{C}_{1} / j\) of the current \(\mathrm{C}_{1}\).]

Adding IV. and V., and doubling the sum to allow for the other window,
\[
\begin{align*}
& \quad \mathrm{M}_{12}^{\prime} \mathrm{C}_{1} \mathrm{C}_{2}=\frac{4 \pi \beta^{\prime}}{3 \mathrm{D}} n_{1} n_{2} \mathrm{C}_{1} \mathrm{C}_{2}\left\{\frac{i^{2}-1}{j} b_{2}+\frac{j^{2}-1}{i} b_{1}\right\}, \\
& \text { or } \mathrm{M}_{12}^{\prime}=\frac{4 \pi \beta^{\prime}}{3 \mathrm{D}} n_{1} n_{2}\left\{\frac{i^{2}-1}{j} b_{2}+\frac{j^{2}-1}{i} b_{2}\right\} \tag{VI.}
\end{align*}
\]
(c) In a similar manner, by aid of the M.M.F. diagram for \(\mathrm{C}_{1}\) also given in Fig. 7, or from symmetry we find that
\[
\left.\begin{array}{rl}
\mathrm{L}_{1}^{\prime} & =\frac{4 \pi \beta^{\prime}}{3 \mathrm{D}} n_{1}^{2}\left\{j b_{1}+\frac{i\left(l^{2}-1\right.}{j^{2}} b_{2}\right\} \\
\mathrm{MI}_{{ }_{21}}^{\prime} & =\frac{4 \pi \beta^{\prime}}{3 \mathrm{D}} n_{1} n_{2}\left\{\frac{j^{2}-1}{i} b_{1}+\frac{i^{2}-1}{j} b_{2}\right\} \\
& =\mathrm{M}_{12}^{\prime}
\end{array}\right\} \mathrm{VII} .
\]
(d) Substituting the values for \(\mathrm{L}_{2}^{\prime}, \mathrm{L}_{1}^{\prime}, \mathrm{M}_{12}^{\prime}, \mathrm{M}_{21}^{\prime}\), in V., VI., and VII. in the expressions for \(x_{3}^{\prime}\) and \(x_{1}^{\prime}\) in \(\S 43\) we find
I. If the two extreme sections in the window are even ones, in which case \(j=i-1\), that
\[
\begin{aligned}
x_{2}^{\prime} & =-\frac{4 \pi \beta^{\prime}}{3 \sigma \mathrm{D}}\left\{b_{2}+\frac{i-2}{i} b_{1}\right\}, \\
x_{1}^{\prime} & =\frac{4 \pi \beta^{\prime}}{3 \sigma \mathrm{D}}\left\{\frac{i+1}{i-1} b_{2}+b_{1}\right\}, \\
x_{2}^{\prime}+x_{1}^{\prime} & =\frac{8 \pi \beta^{\prime}}{3 \sigma \mathrm{D}} \frac{\mathrm{H}}{i(i-1)},
\end{aligned}
\]
where \(\mathrm{H}=i b_{2}+(i-1) b_{1}\)
\[
=\text { total height of window. }
\]
II. If the two extreme sections in the window are odd ones, in which case \(j=i+1\),
\[
\begin{aligned}
& x_{2}^{\prime}=\frac{4 \pi \beta^{\prime}}{3 \sigma \mathrm{D}}\left\{b_{2}+{ }^{i+2}{ }_{i} b_{1}\right\}, \\
& x_{1}^{\prime}=-\frac{4 \pi \beta^{\prime}}{3 \sigma \mathrm{D}}\left\{i-1, b_{2}+b_{1}\right\} \\
& x_{2}^{\prime}+x_{1}^{\prime}=\frac{8 \pi \beta^{\prime}}{3 \sigma \mathrm{D}} \frac{\mathrm{H}}{i(i+1)}
\end{aligned}
\]
(e). From the results in (d) we see
I. That the coetticient \(x_{2}^{\prime}\) or \(x_{1}^{\prime}\) of the coil to which the two extreme sections belong is negative, indicating that this part of the leakage produces on the coil, with the extreme sections, a capacity and not an inductive effect.

The same thing is true with regard to the coefficients \(x^{\prime \prime}{ }_{2}\) and \(x_{1}^{\prime \prime}\) due to the leakage lines that do not cross the windows and which will be determined in the next paragraph, and it has been pointed out in \(\S 29\) that secondary leakage reduces the efficiency of the transformer when operating inductive loads, hence the winding of a shell transformer for inductive work should be so arranged that the two extreme sections belong to the secondary or output coll.
II. That the sum \(x_{1}^{\prime}+x_{2}^{\prime}\) of the coefficients due to the leakage lines crossing the windows is inversely proportional to the product of the numbers of sections in the two coils.
\((f)\). If \(2 b=\mathrm{D}\) be the breadth, and \(2 b^{\prime}\) the height of the window, \(2 \beta, 2 \beta^{\prime}\) the section of the iron tongue as before, \(q_{1}\) and \(q_{2}\) the space factors of the coils; and \(\mu\) the permeability of the iron ; the formulae in \((d)\) can be put in the following forms suitable for calculation.
\[
\begin{aligned}
& x_{2}^{\prime}=\frac{b^{\prime}\left(b+b^{\prime}+\beta\right)}{3 \mu b \beta} \frac{\frac{q_{1}+2 q_{2}}{q_{1}+q_{2}} \mp i}{i(i \mp 1)} \\
& x_{1}^{\prime}=\frac{b^{\prime}\left(b+b^{\prime}+\beta\right)}{3 \mu b \beta} \frac{q_{1}}{q_{1}+q_{2}} \pm i \\
& i(i \mp 1) \\
& x_{2}^{\prime}+x_{1}^{\prime}=\frac{b^{\prime}\left(b+b^{\prime}+\beta\right)}{3 \mu b \beta} \frac{2}{i(i \mp 1)}
\end{aligned}
\]
where the upper signs are to be taken when the two extreme sections belong to coil 2 (the even coil), of \(i\) sections, to which the middle section belongs, and the lower signs, when the extreme sections belong to coil 1 .

Evidently \(i \neq 1\) is the number of sections of coil 1.
48. When we make the same assumption as is made in \(\$ 45\) with regard to the paths taken by the leakage lines that do not cross the windows, we can obtain the values of the coefficients \(x^{\prime \prime}{ }_{1}, x^{\prime \prime}{ }_{2}\) due to these lines in the general case of interleaved windings.

Specifying the coils, sections, and dimensions of the transformer exactly as in the preceding paragraph, and letting
\[
\begin{aligned}
& \mathrm{B}=2 \beta+{ }_{2}^{\pi} \mathrm{D}=2 \beta+\pi b(\text { see } \S 47 f) \\
& \lambda_{2}=\frac{2 \mathrm{D}}{\pi b_{2}}, \quad \lambda_{1}=\frac{2 \mathrm{D}}{\pi b_{1}} \\
& r_{2}^{\prime}=\frac{b_{1}}{b_{2}}, \quad v_{1}=\frac{b_{2}}{b_{1}}
\end{aligned}
\]
we find, after proceeding as in \(\$ \$ 45,47\), that
\[
\begin{aligned}
& \quad x_{2}^{\prime \prime}=\frac{32 \mathrm{~B}}{\sigma}\left[-\frac{1}{8}-\frac{1}{8} v_{2}\left(1-\frac{1}{i^{2}}\right)-\frac{\lambda_{2}}{2 i}+\frac{\lambda_{2}{ }^{2}}{i^{2}} \log \frac{1+2 \lambda_{2}}{2 \lambda_{2}}+\right. \\
& n=i-1 \\
& \quad \sum\left\{\left(\frac{\frac{1}{2} n v_{2}+\lambda_{2}}{i}\right)^{2}+\frac{n\left(\frac{1}{2} n v_{2}+\lambda_{2}\right)}{2 i j}\right\} \log \frac{2 \lambda_{2}+n\left(1+\nu_{2}\right)+1}{2 \lambda_{2}+n\left(1+v_{2}\right)-1}
\end{aligned}
\]
\[
\left.\left.\begin{array}{l}
m=j-1 \\
\quad+\Sigma\left\{\frac{m^{2}}{4 i^{2}}+\frac{m\left(\frac{1}{2} m v_{1}+\lambda_{1}\right)}{2 i j}\right\} \log 2 \lambda_{1}+m\left(1+v_{1}\right)+1 \\
m=1
\end{array}\right] \quad \begin{array}{rl}
2 \lambda_{1}+m\left(1+v_{1}\right)-1
\end{array}\right] .
\]
where, in each of the above expressions, the values to be given to \(n\) are all the even numbers from ' 2 to \(i-1\), and to \(m\) all the odd numbers from 1 to \(j-1\) inclusive.

It will be easily seen, by considering the case of a winding with three sections, that by spreading out the free ends of the sections as is done for cooling purposes the values of the coetticients \(x_{1}^{\prime \prime}\) and \(x_{2}^{\prime \prime}\) will be slightly increased.
49. If the results in \(\$ 48\) be written
\[
\begin{aligned}
& x_{2}^{\prime \prime}=\frac{\mathrm{B}}{\sigma} \mathrm{X}_{2}=\begin{array}{c}
(2 \beta+\pi b)\left(b+b^{\prime}+\beta\right) \\
\mathrm{X}_{2} \\
4 \pi \mu \beta \beta^{\prime}
\end{array} \\
& x_{1}^{\prime \prime}=\frac{\mathrm{B}}{\sigma} \mathrm{X}_{1}=\frac{(2 \beta+\pi b)\left(b+b^{\prime}+\beta\right)}{4 \pi \mu \beta \beta^{\prime}} \mathrm{X}_{1}
\end{aligned}
\]
it is easily seen that \(X_{1}\) and \(X_{2}\) depend only on the shape of the window, the numbers of sections of the two coils, and the ratio of their space-factors. In the following table are given the values of \(\mathrm{X}_{2}\) and \(\mathrm{X}_{1}\) for some different values of \(i\) and \(j\), for square windows and for oblong ones whose height, measured parallel to the iron tongue, is twice their breadth \(\left(2 b^{\prime}=4 b\right)\), and for sone different ratios of space-factors.

It will be noticed in the following table that the coefficient of the coil to which the extreme sections belong is negative, and that the sum of \(\mathrm{X}_{1}\) and \(\mathrm{X}_{21}\) is (q.p.) inversely proportional to the product of the numbers of sections: also that the change of the space-factor ratio from \(4 / 3\) to \(3 / 4\) does not cause much change in \(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\), unless in the three-section winding. Hence, by aid of this table we can obtain very approximate values of

52 Proceedings of the Royal Society of Victoria.
\(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\) for other windings, and for windows of other shapes by interpolation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Numbers of Sections.} & \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { Square Window } \\
& b=b
\end{aligned}
\]} & \multicolumn{3}{|c|}{Oblong Window} \\
\hline \[
\mathrm{Coil}{ }_{i}^{2}
\] & \[
\begin{gathered}
\text { Coil } 1 \\
i \neq 1
\end{gathered}
\] & & \(\mathrm{X}_{1}\) & \(\mathrm{N}_{3}\) & \(\mathrm{X}_{1}+\mathrm{X}_{2}\) & \(\mathrm{N}_{1}\) & \(\mathrm{X}_{2}\) & \(\mathrm{N}_{1}+\mathrm{N}_{2}\) \\
\hline 1 & 2 & 34 & -. 33 & 1.75 & 1.42 & -. 41 & 2.75 & 2.34 \\
\hline 1 & 2 & 4/3 & \(-.37\) & 1.92 & 1.55 & -. 58 & 3.03 & 2.45 \\
\hline 3 & 2 & \(4 / 3\) & . 76 & -. 29 & \(\cdot 47\) & 1.13 & -. 41 & .72 \\
\hline 3 & 2 & \(3 ; 4\) & . 80 & \(-.32\) & . 48 & 1.21 & -. 48 & .73 \\
\hline 3 & 4 & \(3 / 4\) & -. 27 & . 50 & . 23 & -. 38 & . 75 & . 37 \\
\hline 3 & 4 & \(4 / 3\) & \(-.29\) & .53 & 24 & \(-.41\) & . 79 & . 34 \\
\hline 5 & 4 & \(4 / 3\) & . 36 & -. 21 & . 15 & . 54 & -. 32 & .2: \\
\hline 5 & 4 & 4,5 & . 38 & \(-.23\) & . 15 & . 56 & \(-.35\) & . 21 \\
\hline 5 & 6 & \(6 / 5\) & -. 19 & .27 & . 08 & -. 29 & . 44 & .15 \\
\hline
\end{tabular}
[Note that the central section always belongs to coil 2 of \(i\) sections, \(i\) odd.]
50. There is also magnetic leakage due to the lines in the copper conductors, and in the spaces between them, which is of considerable importance in the case of large, low-pressure transformers.

It is well known that the inductance per unit length of a wire, due to the lines in itself is \(1 / 2\), and due to the lines letween its surface of radius \(r\) and a concentric cylinder of radius \(r^{\prime}\) is \(2 \log r^{\prime} r\). In the case of insulated wire wound in a coil it will be very near the truth to take for \(r^{\prime}\) the radius of the circle equal in area to the total area allowed each wire in the winding, so that if \(q\) be the space-factor
\[
\frac{\pi r^{2}}{\pi r^{\prime 2}}=q,
\]
and the inductance of the wire per unit length will be
\[
\frac{1}{2}+\log \frac{1}{q}
\]

Hence, if \(l\) be the mean length of a turn of either coil, their inductances arising from this cause are
\[
\mathrm{L}^{\prime \prime \prime}{ }_{1}=n_{1}\left\{\left\{\frac{1}{2}+\log \frac{1}{q_{1}}\right\},\right.
\]
\[
\mathrm{L}_{2}^{\prime \prime \prime}=n_{2}\left\{\left\{\frac{1}{2}+\log _{q_{2}}\right\}\right.
\]
and if \(x^{\prime \prime \prime}{ }_{1}, r^{\prime \prime \prime}{ }_{2}\) be the corresponding leakage coefficients
\[
\begin{aligned}
& x^{\prime \prime \prime}{ }_{1}^{\prime \prime}=\frac{\mathrm{L}^{\prime \prime \prime} 1}{n_{1}^{2} \sigma}=\frac{l}{n_{1} \sigma}\left\{\frac{1}{2}+\log \frac{1}{q_{1}}\right\}, \\
& x^{\prime \prime \prime}{ }_{2}=\frac{\mathrm{L}^{\prime \prime \prime}}{n_{2}{ }^{2} \sigma}=l \\
& n_{n_{2} \sigma}^{\prime \prime}
\end{aligned}\left\{\frac{1}{2}+\log \frac{1}{q_{2}}\right\} . \quad .
\]

Now it is easy to show by means of relations already given, that
\[
\frac{l}{n_{1} \sigma}=\frac{2 z u \mathrm{P}_{2}}{\rho c \tau \mathrm{E}_{1}} \text { and } \frac{l}{n_{2} \sigma}=\frac{2 \tau u \mathrm{P}_{2}}{\mu i \tau \mathrm{E}_{2}}
\]
where \(\mathrm{P}_{2}=\) full load (non-inductive) output, \(c=a m p\). of current density, \(\rho=\mathrm{sp}\). res. of copper ; so that we have
\[
\begin{aligned}
& x^{\prime \prime \prime}{ }_{1}=\frac{w \mathrm{P}_{2}}{\rho c \tau \mathrm{E}_{1}}\left\{1+थ \log \frac{1}{q_{1}}\right\}, \\
& x^{\prime \prime \prime}{ }_{2}=\frac{\tau v \mathrm{P}_{2}}{\rho c \tau \mathrm{E}_{2}}\left\{1+2 \log \frac{1}{q_{2}}\right\} .
\end{aligned}
\]

It will be shown, for similar transformers designed on the same lines, that \(\tau\) is proportional to \(\sqrt{v_{v} \mathrm{P}_{2}}\), hence if the e.m.f.s remain fixed, \(x^{\prime \prime \prime}{ }_{1}\) and \(x^{\prime \prime \prime}{ }_{2}\) will increase as the square root of the product of output and frequency increases.

If the conductors be rectangular in section instead of circular, the ahove expressions for \(x_{1}{ }^{\prime \prime \prime}\) and \(x_{2}{ }^{\prime \prime \prime}\) will be sufficiently accurate for all practical purposes.

Note. -The comectors from the ands of either coil to the corresponding terminals outside the cases of large transformers ought to include as small an area as possible, since on account of the proximity of the iron of the transformer and of the case, the loops so formed would have considerable inductance, thus increas ing the leakage coefficients, especially that of the low pressure coil, and so impairing the regulation on inductive loads.
51. Let us determine the leakage coefticients \(x_{p}, x_{s}\), for the transformer designed in Section II. [In this paragraph \(x_{p}, x_{s}\), will be the primary and secondary coefficients respectively, while \(x_{2}, q_{2}\), etc., will still refer to the coil with the middle section].

The details for this transformer are (see \(\$ 828\) et seq.),
\(i=1, \quad b=b^{\prime}, \quad \beta=\beta^{\prime}, \quad \beta=1.151 b, \quad \mu=2250\),
\(\rho=1800, \quad c=12.9, \quad \mathrm{E}_{1}=3111.10^{*}, \quad \mathrm{E}_{2}=311.10^{*}\).

54 Proccedings of the Royal Society of Victoria.
\(\mathrm{P}_{2}=12.5 . \mathrm{K}\). W., \(\quad \tau=6080, \quad i=100 \pi, \quad\) and as the middle coil is the primary one \(q_{2}=q_{p}=.5, \quad q_{1}=q_{s}=.7\).

From \(\S 47, f\), taking the lower signs,
\[
\begin{aligned}
& x_{1}^{\prime}=\frac{2 b+\beta}{3 \mu \beta} \frac{\frac{1}{12}+1}{2}=.000490 \\
& x_{1}^{\prime}=\frac{2 b+\beta}{3 \mu \beta} \frac{{ }^{\frac{7}{2}}-1}{2}=-.000084 .
\end{aligned}
\]

From \(\& 49\), taking from the table the values of \(\mathrm{X}_{2}\) and \(\mathrm{X}_{1}\), \(i=1, b=b_{1}^{3}\), and \(q_{2} / q_{1}=3 / 4\), which is sufficiently close to \(5 / 7\), we get
\[
\begin{aligned}
& x_{2}^{\prime \prime}=\frac{(2 \beta+\pi b)(2 b+\beta)}{4 \pi \mu \beta^{2}} 1.75=.00080 \\
& x_{1}^{\prime \prime}=-\frac{(2 \beta+\pi b)(2 b+\beta)}{4 \pi \mu \beta^{2}} .33=-.00015
\end{aligned}
\]

From § 50,
\[
\begin{aligned}
& x^{\prime \prime \prime}{ }_{2}=x^{\prime \prime \prime}{ }_{p}=\frac{9}{10^{7}}\left(1+2 \log _{2}\right)=.000002, \\
& x^{\prime \prime \prime}{ }_{1}=x^{\prime \prime \prime \prime}{ }_{s}=\frac{9}{10^{\prime \prime}}\left(1+2 \log _{\frac{1}{7}}^{10}\right)=.000015,
\end{aligned}
\]
which in this case of few sections are relatively negligible.
But \(x_{p}=x_{2}^{\prime}+x^{\prime \prime}{ }_{2}+x^{\prime \prime \prime}{ }_{2}, \quad x_{s}=x_{1}^{\prime}+x^{\prime \prime}{ }_{1}+x^{\prime \prime \prime}{ }_{1}\), hence \(x_{p}=.00129, \quad x_{s}=-.00024, \quad x_{p}+x_{s}=.00105\).

If this transformer had been wound so that the secondary as a single coil occupied the central position, with half of the primary on either side, its leakage coefficients \(x_{p,}^{\prime} x^{\prime}\) would be
\[
x_{p}^{\prime}=-.00029, \quad x_{s}^{\prime}=.0014 .
\]
and it is interesting to find what effect this change in the relative positions of the two coils would have on the efficiency for inductive loads.

When we neglect all small terms but the one that depends on the first power of the leakage, we find from \(\$ 15\) that the maximum efficiency
\[
\begin{aligned}
& \eta=\frac{2}{1+\frac{2}{\operatorname{Cos} \phi} \sqrt{\operatorname{TSin} \delta}+2 x_{s} \tan \phi \operatorname{Sin} \delta} \\
& =\left\{1-\frac{2}{\operatorname{Cos} \phi} \sqrt{ } \overline{\operatorname{TSin} \delta}\right\}\left(1-2 x_{s} \tan \phi \operatorname{Sin} \delta\right) \\
& =\eta_{v}\left(1-2 x_{s} \tan \phi \operatorname{Sin} \delta\right) \quad \text { (q.p.) }
\end{aligned}
\]
where \(\mathrm{T}=1 \frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}=\frac{2}{\tau}\)
Hence \(\eta\) is proportional to \(1-2 x_{s} \tan \phi \operatorname{Sin} \delta\) and the ratio \(\eta / \eta^{\prime}\) of the efficiencies of the same transformer, but differently wound as above, is for loads of the same power factor,
\[
\begin{aligned}
\frac{\eta}{\eta^{\prime}} & =\frac{1-2 x_{s} \tan \phi \operatorname{Sin} \delta}{1-2 x_{s}^{\prime} \tan \phi \operatorname{Sin} \delta} \\
& =1-2\left(x_{s}-x_{s}^{\prime}\right) \tan \phi \operatorname{Sin} \delta, \\
& =1+.00328 \tan \phi \operatorname{Sin} \delta,
\end{aligned}
\]
\[
\text { as } x_{s}=-.00024, x_{s}^{\prime}=.0014
\]

If \(\operatorname{Cos} \phi\), the power factor of the load, be \(.8, \tan \phi=.75\),
and \(\begin{gathered}\eta \\ \eta^{\prime}\end{gathered}=1.0019\left(\right.\) taking \(\left.\delta=50^{\circ}\right)\),
and if \(\operatorname{Cos} \phi=.6, \quad \tan \phi=4 / 3\),
and
\(\frac{\eta}{\eta^{\prime}}=1.0034\).
So that when the secondary coil occupies the two outside positions the transformer will have for inductive loads, when \(\operatorname{Cos} \phi=.8\), a greater efficiency by .19 per cent., and when \(\operatorname{Cos} \phi=.6\) a greater efficiency by .34 per cent. than when the primary occupies the outside positions.

For non-inductive loads the difference in efficiency will be very small, as it then depends on the square of \(x_{s}\).
52. In §41 it has been shown how, from the data for any particular design, the dimensions of the carcass and approximate values of the numeric \(\tau\) and of the efticiency can be quickly obtained.

Selecting from the series in \(\S 41\), transformer \((c)\), of which the the details are:-

Capacity 12.5 K .W. at 50 periods,
\(2 b^{\prime}=3 b, \quad 2 \beta^{\prime}=3 \beta, \quad \beta=1.141 b, \quad \tau=6910\),
\(\mu=2250, \quad c=12.9, \quad \operatorname{Sin} \delta=.766, \quad q_{p}=.5, \quad q_{s}=.7\),
to which we will add \(\mathrm{E}_{p}=2200\) volts \(=3111.10^{*}, \mathrm{E}_{8}=311 \cdot 10^{8}\). let us determine its leakage coefficients and approximate values of its voltage drop for different kinds of loads if it be wound in five sections, three secondary and two primary.

As the middle and end sections belong to the secondary coil, \(q_{2}=.7, q_{1}=.5\) and from the formulae in \(\S 47, f\)., taking the upper sign we get
\[
\begin{aligned}
& x_{2}^{\prime}=-\frac{.377}{\mu}=-.000168 \\
& x_{1}^{\prime}=\frac{.909}{\mu}=.000404
\end{aligned}
\]

From the formulae in \(\$ 49\),
\[
x_{2}^{\prime \prime}=\frac{.804}{\mu} X_{2}, \quad x_{1}^{\prime \prime}=\frac{.804}{\mu} X_{1} ;
\]
for \(X_{2}\) and \(X_{1}\), which are to be for a window in which \(b^{\prime} \mid b=1.5\), we will take the mean of the values given in the table for windows in which \(b^{\prime} \mid b=1\) and \(b^{\prime} \mid b=2\), and as \(i=3\), five sections, \(q_{2} / q_{1}=4 / 3\), we get
\[
\begin{aligned}
& \mathrm{X}_{2}=\frac{.29+.41}{2}=-.35 \\
& \mathrm{X}_{1}=\frac{.76+1.13}{2}=.945
\end{aligned}
\]
hence
\[
x_{2}^{\prime \prime}=-.000125, \quad x_{1}^{\prime \prime}=.000338
\]

From the formulae in \(\$ 50\),
\[
x^{\prime \prime \prime}{ }_{p}=.000002, \quad x^{\prime \prime \prime}{ }_{s}=.000014
\]

Hence, as
\[
\begin{array}{ll}
x_{p}=x_{1}^{\prime}+x_{1}^{\prime \prime}+x^{\prime \prime \prime}{ }_{p}, & x_{s}=x_{2}^{\prime}+x_{2}^{\prime \prime}+x^{\prime \prime \prime} s \\
x_{p}=.000744, & x_{s}=-.000279, \\
x_{p}+x_{s}=.000465 . &
\end{array}
\]

In Section I., \(\S 23\), it was shown that R , the drop per cent., can be expressed in the form
\[
\begin{aligned}
& \mathrm{R}=100\left\{x \operatorname{Sin} \phi+t \operatorname{Cos} \phi+x^{2}\left(\operatorname{Sin}^{2} \phi+\frac{\operatorname{Cos}^{2} \phi}{2}\right)+t^{2}\left(\operatorname{Cos}^{2} \phi+\right.\right. \\
& \left.\left.\frac{\operatorname{Sin}^{2} \phi}{2}\right)+x t \operatorname{Sin} \phi \operatorname{Cos} \phi\right\}
\end{aligned}
\]
where \(x=y\left(x_{p}+x_{s}\right), t=y\left(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}\right)=22^{y}\).
Now to the first order \(y=\theta\) (full load values)
and \(\theta=\sqrt{\frac{\overline{z \tau \operatorname{Sin} \delta}}{2}}\) q.p. (see \(\S 17\))
where \(z\) (\(=1\) in this case) is the chosen ratio of copper to iron losses at full load.

Hence in this case
\(y=\sqrt{\frac{6910 \cdot .766}{2}}=51 \quad\) (q.p.)
and \(x=51 . .000465=.0237\),
\(t=51 \cdot \frac{2}{6910}=.0148\).
which, by means of the formula for R give the following approximate values for the regulation.
\begin{tabular}{ccc}
\begin{tabular}{c}
Power Factor. \\
\(\operatorname{Cos} \phi\)
\end{tabular} & & \begin{tabular}{c}
Drop per cent. \\
R.
\end{tabular} \\
1.0 & \(\ldots\) & 1.53 \\
.9 & \(\ldots\) & 2.43 \\
.8 & \(\ldots\) & 2.68 \\
.6 & \(\ldots\) & 2.86
\end{tabular}

These figures agree remarkably well with the following (already discussed in Section I.), given by the Westinghouse Co. as the regulation of their \(10 \mathrm{~K} . \mathrm{W} .60\) period O.D. transformers, which are also wound in five sections-three primary and two secondary. As regards regulation, the \(12.5 \mathrm{~K} . \mathrm{W} .50\) period transformer considered above, and the \(10 \mathrm{~K} . \mathrm{W} .60\) period Westinghouse one are nearly equivalent, as \(w \mathrm{P}\) is nearly the same for both \([2 \pi, 625\) as against \(2 \pi, 600]\).

Regulation of equivalent Westinghouse Transformer.
\begin{tabular}{ccc}
\begin{tabular}{c}
Power Factor \\
\(\operatorname{Cos} \phi\)
\end{tabular} & & Drop per cent. \\
1.0 & \(\ldots\) & - \\
.9 & \(\ldots\) & 2.45 \\
.8 & \(\ldots\) & 2.65 \\
.6 & \(\ldots\) & 2.80
\end{tabular}
53. In order to obtain approximate values for the leakage coefficients of transformers of the core type it will be sufficiently accurate to consider the core as straight, and connecting two large masses of iron.

Let the core be circular in section of radius \(r\) having coil 2 lying betwen the cylinders whose radii are \(r\) and \(r+b_{2}\) and coil 1 ,
lying between the cylinders whose radii are \(r+b_{2}\) and \(r+b_{2}+b_{1}\), and let \(r+b_{3}+b_{1}=r_{0}\).

The flux density due to \(\mathrm{C}_{1}\) at all points on the cylinder of radius \(r_{0}-z\) is
\[
=\frac{4 \pi n_{1} \mathrm{C}_{1} z}{\lambda^{\prime}} \frac{\bar{b}_{1}}{}
\]
where \(\lambda^{\prime}\) is the length of the windings parallel to the core, and the flux in the \(\mathrm{C}_{1}\) space between the cylinders of radii \(r_{0}-z\) and \(r_{0}-(z+d z)\) is
\[
=\frac{4 \pi n_{1} \mathrm{C}_{1}}{\lambda^{\prime}} \bar{b}_{1} 2 \pi\left(r_{0}-z\right) d z,
\]
and it is looped on that part
\[
\stackrel{n_{1} \mathrm{C}_{1}}{b_{1}}
\]
that lies without it , hence it contributes energy \(d \mathrm{E}\) where
\[
d \mathrm{E}=\frac{4 \pi^{2} n_{1}^{2} \mathrm{C}_{1}^{2}}{\lambda^{\prime} b_{1}^{2}}\left(r_{0}-z\right) z^{2} d z
\]

Integrating between \(z=0\) and \(z=b_{1}\)
\[
\begin{aligned}
\mathrm{E} & =\frac{4 \pi^{2} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2}\left\{\frac{r_{0} b_{1}}{3}-\frac{b_{1}{ }^{2}}{4}\right\}}{\lambda^{\prime}} \\
& \left.=\frac{4 \pi^{2} n_{1}{ }^{2} \mathrm{C}_{1}^{2}}{\lambda^{\prime}}\right\}\left(\frac{\left.r+b_{2}\right) b_{1}}{3}+\frac{b_{1}^{2}}{12}\right\},
\end{aligned}
\]
as \(r_{0}=r+o_{1}+b_{21}\).
The current \(\mathrm{C}_{1}\) also sends through the space occupied by coil 2 a uniform flux
\[
=\frac{4 \pi n_{1} \mathrm{C}_{1}}{\lambda^{\prime}} \pi\left\{\left(r+b_{2}\right)^{2}-r^{2}\right\}
\]
which is looped on all of \(n_{1} \mathrm{C}_{1}\) and therefore contributes energy to the amount
\[
\frac{4 \pi^{2} n_{1}{ }^{2} \mathrm{C}_{1}{ }^{2}}{\lambda^{\prime}}\left\{r b_{2}+\frac{b_{2}^{2}}{2}\right\},
\]
so that the energy of \(\mathrm{C}_{1}\) due to those lines that it produces and that do not traverse the core is
\[
=\frac{4 \pi^{2} n_{1}^{2} \mathrm{C}_{1}^{2}}{\lambda^{\prime}}\left\{r\left(\frac{b_{1}}{3}+b_{2}\right)+\frac{b_{1}^{2}}{12}+\frac{b_{1} b_{2}}{3}+\frac{b_{2}^{2}}{2}\right\},
\]
but it is also \(=\frac{1}{2} \mathrm{~L}_{1} \mathrm{C}_{1}{ }^{2}\)
hence
\[
\mathrm{L}_{1}=\frac{8 \pi^{2} n_{1}^{2}}{\lambda^{\prime}}\left\{r\left(\frac{b_{1}}{3}+b_{2}\right)+\frac{b_{1}{ }^{2}}{12}+\frac{b_{1} b_{2}}{3}+\frac{b_{2}{ }^{2}}{2}\right\} .
\]

In a similar manner we find that
\[
\begin{aligned}
& \mathrm{L}_{2}=8 \pi^{2} n_{2}^{2} \lambda^{2}\left\{\begin{array}{rl}
r b_{2} \\
3
\end{array}+\frac{b_{2}^{2}}{12}\right\} \\
& \mathrm{M}_{12}=\mathrm{M}_{21}=\frac{8 \pi^{2} 1_{1} 1_{2}}{\lambda^{\prime}}\left\{\frac{r b_{2}}{2}+\frac{b_{2}^{2}}{6}\right\},
\end{aligned}
\]
but
\[
\begin{aligned}
& x_{1}=\frac{1}{n_{1} \sigma}\left\{\frac{L_{1}}{n_{1}}-\frac{\mathrm{M}_{21}}{n_{2}}\right\}, \\
& \therefore x_{1}=8 \pi^{2}\left\{\left(\frac{h_{1}}{3}+\frac{b_{2}}{2}\right) r+\frac{\left(b_{1}+2 b_{2}\right)^{2}}{12}\right\}, \text { and similarly } \\
& x_{2}=-\frac{8 \pi^{2}}{\lambda^{\prime} \sigma}\left\{\frac{r h_{2}}{6}+\frac{b_{2}^{2}}{12}\right\} \\
& x_{1}+x_{1}=\frac{8 \pi^{2}}{\lambda^{\prime} \sigma}\left(b_{1}+b_{2}\right)\left\{\frac{r}{3}+\frac{b_{1}+3 b_{2}}{12}\right\} .
\end{aligned}
\]

From which we see that the leakage coefficient, \(x_{2}\), of the coil next the core is negative.

The equation giving \(x_{2}+x_{1}\) can be written
\[
\begin{equation*}
x_{1}+x_{2}=\frac{4 \pi^{2}}{3 \lambda^{\prime} \sigma}\left(b_{1}+b_{2}\right)\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) \tag{I.}
\end{equation*}
\]
where \(S_{1}\) and \(S_{2}\) are the mean radii of the two coils; and if \(q_{1}\) and \(q_{2}\), be their space factors, their copper sections per unit length of winding are
\(b_{1} q_{1}\) and \(b_{2} q_{2}\).
These will be equal or very nearly so, and
let \(b_{1} q_{1}=b_{2} q_{2}=s\),
then \(b_{1}+b_{3}=2 s / Q\)
where \(\mathrm{Q}=\frac{9 q_{1} q_{2}}{q_{1}+q_{2}}\), the harmonic mean of \(q_{1}\) and \(q_{2}\).
The total copper volume
\[
\left.=2 \pi \lambda^{\prime}\left(\mathrm{S}_{1} q_{1} b_{1}+\mathrm{S}_{2} q_{2} b_{2}\right)_{2}\right)=2 \pi \lambda^{\prime} s\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right)=\pi Q \lambda^{\prime}\left(b_{1}+b_{2}\right)\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right),
\]
and \(\sigma=4 \pi \mu \frac{\text { Volume of iron }}{\lambda^{2}}\)
where \(\lambda=\) length of magnetic circuit,
hence
\[
\begin{equation*}
x_{1}+x_{2}={ }_{3 \mu} \lambda^{\lambda^{2}}{\mathrm{Q} \lambda^{\overline{1}^{2}}} \times \frac{\text { volume of copper }}{\text { volume of iron }} \tag{II.}
\end{equation*}
\]
and if the transformer is being designed so that the copper losses are to be \(z\) times the iron losses at full load, then
\[
\frac{\text { Vol. copper }}{\text { Vol. iron }}=z \frac{\mathrm{I}}{\mathrm{~K}}
\]
where K and I are these losses per \(\mathrm{cm} .^{3}\)
\[
\begin{equation*}
\therefore \quad x_{1}+x_{2}=\frac{\lambda^{2}}{3 \mu \mathrm{Q} \lambda^{\prime 2}} \quad \approx \frac{\mathrm{I}}{\mathrm{~K}} \tag{IIT.}
\end{equation*}
\]
a form very suitable for the determination of \(x_{1}+x_{2}\) for core transformers.

For example, if \(z=1, \mathrm{~T}=10^{5}, \mathrm{~K}=15.10^{4}, q_{1}=.5, q_{2}=.7, \mathrm{Q}=.583\) as before, \(x_{1}+x_{2}\) for any core transformer designed on these data is given by
\[
x_{1}+x_{2}=\frac{\lambda^{2}}{3 \mu \lambda^{\prime 2}} 1.14
\]

For a core transformer of the H type, simply wound, in which the rectangular opening in the stampings is \(10.2 \times 25.2 \mathrm{~cm}\)., and the width of the surrounding iron strip 8.9 cm . (See § 57)
\[
\begin{aligned}
& \lambda^{\prime}=2 \times 25.2=50.4 \mathrm{~cm} . \\
& \lambda=106.4 \mathrm{~cm} .
\end{aligned}
\]
and if \(\mu=2250\),
\[
x_{1}+x_{2}=.00075
\]
54. If a core transformer be wound with \(2 i\) layers, \(i\) each of primary and secondary arranged alternately, and if D be the total clepth of the windings, it can be shown that
\(x_{1}+x_{2}=\frac{4 \pi^{2} \mathrm{D}}{3 \lambda^{\prime} \sigma i^{3}} \times\) sum of the mean radii of all the layers,
\[
=\frac{8 \pi^{2} \mathrm{D}}{3 \lambda^{\prime} \sigma i^{2}} \times \text { mean of the mean radii of all the layers, }
\]
which by exactly similar reasoning to that in \(\$ 53\) can be put into either of the forms,
\[
\begin{aligned}
& x_{1}+x_{2}=\frac{1}{i^{2}} \frac{\lambda^{2}}{3 \mu \mathrm{Q} \lambda^{\prime 2}} \frac{\text { volume of copper }}{\text { volume of iron }} . \\
& \text { or } x_{1}+x_{2}=\frac{1}{i^{2}} \frac{\lambda^{2}}{3 \mu \lambda^{\prime 2}} \frac{\square \mathrm{I}}{\mathrm{QK}} .
\end{aligned}
\]

If there be \(i\) layers of one coil and \(i+1\) of the other, then we may take
\[
x_{1}+x_{2}=\frac{1}{i(i+1)} \frac{\lambda^{2}}{3 \mu \lambda^{\prime 2}} \frac{z \mathrm{I}}{\mathrm{QK}}
\]

This result and those in \(\$ 53\) will be sufficiently accurate for all practical purposes when the coils are rectangular in plan.

\section*{The Transformer Numerics.}
55. The numeric \(\tau\left(=\tau_{1}=\tau_{2}\right.\) (q.p.)) for transformers of any given type can be expressed in terms of the full-load output, periodicity, and the magnetic and electric qualities of the iron and copper.

Let us consider the case of transformers of the shell type similar to the one designed in Section II., with square windows \((2 b, 2 b)\), and iron tongue of square cross section \((2 \beta, 2 \beta)\).

From s̊ 33
\[
\begin{equation*}
\tau=\mathrm{A} \frac{\mu \tau v}{\rho}(b+\beta) \frac{b^{2} \beta^{2}}{(2 b+\beta)} \tag{I.}
\end{equation*}
\]
where \(A\) is a constant depending on the iron and copper space factors.

From the solution, as in \(\$ 32\) of the equation
\[
\frac{2 Q K b^{2}(b+\beta)}{p \mathrm{I} \beta^{2}(2 b+\beta)}=z
\]
which expresses the relation between the iron and copper losses at full load, we get
\[
\begin{equation*}
\beta=\mathrm{B} b \tag{II.}
\end{equation*}
\]
in which \(B\) will be a constant, if, for all transformers of the series
\(\frac{p \mathrm{I} z}{\mathrm{QK}}\)
be constant.
We may consider \(p\) the iron space factor as fixed, and, provided the primary and secondary pressures remain the same, Q , the harmonic mean of the copper space factors, also as fixed; and the above expression will be constant if \(z\), the ratio of the copper to the iron losses at full load, be the same for all transformers of the series as well as the ratio \(\mathrm{K} / \mathrm{I}\) of copper to iron loss per \(\mathrm{cm}^{3}\) at full load, both however, diminishing slightly in the same proportion as the capacity increases ; or
\[
z=\text { Const. } \mathrm{K}=\mathrm{K}_{0}\left(1-m \mathrm{P}_{2}\right) \mathrm{I}=\mathrm{I}_{0}\left(1-m \mathrm{P}_{2}\right) . \quad(\mathrm{III} .)
\]
where \(m\) is a small fraction.
Another way in which \(1 z / \mathrm{K}\) would be constant, and one more in accordance with the practice of some manufacturers, would be for K and I s each to be constant, I diminishing as the capacity increased, and \(z\) increasing in the same ratio ; or

6: Proceedings of the Royal Society of Victoria.
\[
\mathrm{K}=\text { Const., } \mathrm{I}=\frac{\mathrm{I}_{0}}{1+n \mathrm{P}_{2}}, \quad z=1+n \mathrm{P}_{2} . \quad(\mathrm{IV} .)
\]
where \(n\) is a small fraction.
Again we have the full load output
\[
\mathrm{P}_{2}=\frac{1}{2} \pi\left(n_{2} \mathrm{C}_{2} \mathrm{~F}\right. \text { (q.p.) }
\]
for a non-inductive load on which the transformer would be rated, but
\[
n_{2} \mathrm{C}_{2}=2 \mathrm{Q} b^{2} c=2 \mathrm{Q} b^{2} \sqrt{\frac{\overline{2 \mathrm{~K}}}{\rho}} .
\]
and
\[
\mathrm{F}=4 p \beta^{2} \gamma=4 p \beta^{2} \sqrt{\frac{8 \pi \mu \mathrm{I}}{2 \operatorname{Sin} \delta} .}
\]
hence
\[
\mathrm{P}_{2}=\mathrm{D} b^{2} \beta^{2} \sqrt{\frac{\mu z v}{\rho \operatorname{Sin} \delta} \mathrm{KI}}
\]
where D is a constant.
Substituting in equation \(\mathbf{I}\). for \(b\) and \(\beta\), their values determined from II. and V., we get
\[
\tau=M \sqrt[4]{\frac{\mu^{3} z v^{3} \operatorname{Sin} \delta}{\rho^{3}}} \frac{\mathrm{P}_{2}{ }^{2}}{\mathrm{KI}}
\]
where M is a constant.
Now I find for the same sample of iron that
\(\frac{\mu^{3} z e \operatorname{Sin} \delta}{\mathrm{I}}\)
is very nearly constant when \(w\) is constant over the range of flux densities, or of Is, commonly used in transformers, and that it increases slightly as \(w\) diminishes.

Taking it as constant, we get
\(\tau=\mathrm{N} \sqrt[4]{\mathrm{K}} \sqrt{v e \mathrm{P}_{2}}\)
Hence if \(\tau\) for a transformer of a given type be known, the equation
\[
\frac{\tau^{2}}{w \mathrm{P}_{2}}=\text { Const. }
\]
will enable us to obtain fairly approximate values of \(\tau\) for other transformers of the same type that differ in capacity and periodicity.

It is worth noting that equation \(V\). above shows that, for equal heating or equal iron and copper losses per unit volume, the out-
put of a transformer is proportional to \(\sqrt{\frac{\mu z}{\operatorname{Sin} \delta}}\).
This is not proportional to the square root of \(z\) or of the frequency as, when \(z v\) increases, \(\mu\) for the same flux density will diminish and Sin \(\delta\) will increase.

Most Efficient Shapes of Transformers.
56. It has been shown (\(\$ 21\)) that when consideration of leakage is neglected, the measure of excellence of a transformer is

\section*{\(\frac{\tau}{\operatorname{Sin} \delta} ;\)}
hence the most efficient transformer of a given type and capacity and made of similar iron will be that one for which \(\tau\) is a maximum.

If \(a, a\) be the total cross sections (insulation, etc., included) of the copper and iron circuits respectively, and \(l, \lambda\) their mean lengths, then
\[
\begin{aligned}
& g \frac{a \alpha}{l \lambda}=\tau, \\
& \frac{a l}{a \lambda}=z \frac{p \mathrm{I}}{\mathrm{Q} \kappa}=z^{\prime},
\end{aligned}
\]
where \(g\) and \(z^{\prime}\) are constants.
Hence, as
\[
\tau z^{\prime}=g \frac{a^{2}}{\lambda^{2}}, \quad \frac{\tau}{z^{\prime}}=g \frac{a^{2}}{l^{2}}
\]
for \(\tau\) to be a maximum,
\[
\frac{\lambda}{a} \text { and } \frac{l}{\alpha}
\]
must both be minima, and as the output
\[
\mathrm{P}_{2}=h a \alpha
\]
where \(h\) is a constant, as the flux and current densities will be fixed, the problem resolves itself into finding values for the dimensions of the carcass that will make
\(\frac{\lambda}{a}\) and \(\frac{l}{a}\) both minima when \(a \alpha\) is constant.
Specifying the dimensions of a shell transformer in the usual way \(\left(\right.\) window \(=2 b, 2 b^{\prime}\), tongue \(\left.=2 \beta, 2 \beta^{\prime}\right)\),
\[
\begin{aligned}
& a=4 b b^{\prime}, \quad l=4\left(\beta+\beta^{\prime}+2 b\right), \\
& a=4 \beta \beta^{\prime}, \quad \lambda=4\left(b+b^{\prime}+\beta\right) .
\end{aligned}
\]
and proceeding by the method of indeterminate multipliers (\(\mathrm{A}, \mathrm{B}, \mathrm{C}\)),
\[
\mathrm{A} d\binom{\lambda}{a}+\mathrm{B} d\left(\frac{l}{a}\right)+\mathrm{C} d(a \alpha)=0
\]
in which the coefficients of \(d b, d b^{\prime}, d \beta\), and \(d \beta^{\prime}\) being equated to zero give us,
\[
\begin{array}{rl}
\frac{b^{\prime}+\beta}{b^{2} b^{\prime}} \mathrm{A}-\frac{2}{\beta \beta^{\prime}} \mathrm{B}+b^{\prime} \beta \beta^{\prime} \mathrm{C} & =0 \\
b+\beta \\
\frac{b b^{\prime 2}}{} \mathrm{~A} \quad+b \beta \beta^{\prime} \mathrm{C} & =0 \\
-\frac{1}{b b^{\prime}} \mathrm{A}+\frac{\beta^{\prime}+2 b}{\beta^{2} \beta^{\prime}} \mathrm{B}+b b^{\prime} \beta^{\prime} \mathrm{C} & =0 \\
\beta+2 b \\
\beta \beta^{\prime 2} & \mathrm{~B}+b b^{\prime} \beta \mathrm{C}
\end{array}=0 .
\]

Eliminating \(\mathrm{A}, \mathrm{B}\), and C from any two sets of three of these equations we get the two relations
\[
\left.\begin{array}{l}
\beta\left(3 b-b^{\prime}\right)=2 \dot{b}\left(b^{\prime}-2 n\right) \tag{I.}\\
\beta\left(\beta^{\prime}-2 \beta\right)=b\left(3 \beta-\beta^{\prime}\right)
\end{array}\right\}
\]
which show that \(b^{\prime}>2 b\) and \(<3 b\)
and
\[
\beta^{\prime}>2 \beta \text { and }<3 \beta \text {. }
\]

Let \(b^{\prime}=\xi b, \quad \beta^{\prime}=\eta \beta, \quad \beta=u b\), and equations I. can be put in the forms
\[
\begin{align*}
& \left.u=2 \frac{\xi-2}{3-\xi}=\begin{array}{l}
3-\eta \\
\eta-2
\end{array}\right) \tag{II.}\\
& \text { or } \xi=\begin{array}{c}
3 u+4 \\
u+2
\end{array}, \quad \eta=\frac{2 u+3}{u+1}\{
\end{align*}
\]
by means of which the equation of the losses
\[
\frac{a l}{a \lambda}=z \frac{p \mathrm{I}}{\mathrm{Q} \mathrm{~K}}
\]
leecomes
\[
\begin{equation*}
\frac{(3 u+4)\left(3 u^{2}+6 u+2\right)}{u^{2}(-\cdot u+3)\left(u^{2}+6 u+6\right)}=z \text { QI } \text { QK } \tag{III.}
\end{equation*}
\]
from which \(u\) (the one positive root) can be determined by trial when \(z p \mathrm{~T} / \mathrm{QK}\) is known. \(\xi\) and \(\eta\) are found from \(u\) by equations IT., and so the shapes of window and tongue and their relative sizes are determined.

The relation \(\frac{1}{2} w n_{2} \mathrm{C}_{2} \mathrm{~F}=\mathrm{P}_{3}\) can now he reduced to
\[
\begin{equation*}
b^{4} u^{2} \dot{\xi} \eta=\frac{\mathrm{P}_{2}}{4 p \mathrm{Q} c_{2} \gamma z v} \tag{IV.}
\end{equation*}
\]
from which \(b\), and hence the transformer, is determined.
The equation for \(\tau\) can be put in the form
\(\begin{aligned} \tau & =\frac{\pi \mu \mathrm{P}_{2}}{2 \rho c_{2} \gamma}\left(\overline{\left.\beta+\beta^{1}+2 b\right)\left(b+b^{1}+\beta\right)}\right. \\ \text { or } \tau & =\frac{\pi \mu \mathrm{P}_{2}}{2 \rho c_{2} \gamma b^{2}}\left(\frac{1}{2+\xi+u)(2+u+\eta u)}\right.\end{aligned}\)
by means of which it can be quickly calculated, and it will be found that the result is a true maximum.

For example, assuming the same data for design as are adopted in \(\$ 41\) and 52 ,
\[
z_{\mathrm{QK}}^{p \mathrm{I}}=1.029
\]
and equation III. gives
\[
u=1.1,
\]
hence by means of II. we find that \(b^{\prime}=2.35 b, \beta^{\prime}=2.48 \beta\), which with \(\beta=1.1 b\), give the most efficient shape for a shell transformer in which \(z p \mathrm{I} / \mathrm{QK}=1.029\).

If \(\mathrm{P}_{2}=12.5 \mathrm{~K}\). W., the same capacity as that of the transformers in \(\S 41\), equation IV gives
\(b=4.55\),
and equation \(V\).,
\(\tau=7300\).
The losses being al QK and \(\alpha \lambda p \mathrm{~T}\), we find that each is equal to 181 watts, so that the efticiency at full load is 97.2 per cent.

This maximum efficiency transformer will not have such good regulation on inductive loads as others less efficient, but with relatively wider windows. A compromise between efficiency and regulation can always be made suitable to the mature of the work the transformer is intended for.

For the above transformer, if wound in five sections, \(x_{1}+x_{2}=\) .00075 ; and the regulation would be, for a non-inductive load, 1.55 per cent., and for an inductive load of .8 power factor, 3.7 per cent. These figures can be compared with those in \(\S 52\).
57. A core transformer of the H type, in which the magnetic eircuit is rectangular (\(2 \beta, 2 \beta^{\prime}\)) in section and the coils rectangular in plan, is exactly the same in geometrical shape as a shell transformer, but the copper and iron circuits of the former occupy the places of the iron and copper circuits of the latter.

Let \(2 b, 2 b^{\prime}\) be the dimensions of the rectangular windows, or winding apertures in the laminae, the coils being wound round the \(2 b^{\prime}\) dimension, \(2 \beta\) the width of the iron strip, and \(2 \beta^{\prime}\) the dimension of the core measured perpendicular to the laminae, then
\[
\begin{aligned}
& a=4 b b^{\prime}, \quad l=4\left(\beta+\beta^{\prime}+b\right) \\
& a=4 \beta \beta^{\prime}, \quad \lambda=4\left(b+b^{\prime}+2 \beta\right) .
\end{aligned}
\]
and we find as in \(\$ 56\), or by simply interchanging \(\beta\) and \(b\), \(\beta^{\prime}\) and \(b^{\prime}\) in I., § 56 , that for maximum \(\tau\), that is maximum efficiency
\[
\begin{align*}
& b\left(3 \beta-\beta^{\prime}\right)=2 \beta\left(\beta^{\prime}-2 \beta\right), \\
& b\left(b^{\prime}-2 b\right)=\beta\left(3 b-b^{\prime}\right) . \\
& \text { If } b^{\prime}=\xi b, \quad \beta^{\prime}=\eta \beta, \text { and } \beta=u b \text { as before, } \\
& u=\frac{\xi-2}{3-\xi}=\frac{1}{2} \frac{3-\eta}{\eta-2} \\
& \xi=\frac{3 u+2}{u+1}, \quad \eta=\frac{4 u+3}{2 u+1} ; \quad \text { (II.) } \tag{II.}
\end{align*}
\]
and the equation of the losses is
\[
\frac{(3 u+2)\left(6 u^{2}+6 u+1\right)}{u^{2}(4 u+3)\left(2 u^{2}+6 u+3\right)}=z \frac{p \mathrm{I}}{\mathrm{QK}}
\]
provided the coils are wound in a number of alternate layers so that the mean lengths of the primary and secondary turns are equal.

From this equation \(u\) can be found, and thence by II., \(\xi\) and \(\eta\).
The equation of the output (see \(\S 56\), IV.)
\[
b^{4} u^{2} \xi_{\eta}=\frac{\mathrm{P}_{2}}{4 p \mathrm{Q}_{2} \gamma v}
\]
gives \(b\), which with \(u, \xi\) and \(\eta\), determine the transformer.
In this case
\[
\tau=\frac{\pi \mu \mathrm{P}_{2}}{2 \rho c_{2} \gamma b^{2}} \frac{1}{(1+\xi+2 u)(1+u+u \eta)}
\]

For example, if
\[
\begin{aligned}
z \frac{p \mathrm{I}}{\mathrm{QK}} & =1.029 \\
\mathrm{P}_{2} & =12.5 \mathrm{~K} . \mathrm{W} . \text { as before, }
\end{aligned}
\]
then \(u=.876, \quad \xi=2.47, \quad \eta=2.36, \quad b=5.1\), and \(\tau=7320\), just the least thing better than the maximum efficiency transformer of the shell type.

If \(z p \mathrm{I} / \mathrm{QK}=1\), max. \(\tau\) would be the same for both types, and if \(z p \mathrm{I} / \mathrm{QK}<1\), the shell type would be the better.

Magnetic leakage is in general less, and good regulation more easy to attain in core transformers than in shell transformers. To enable a comparison to be made with the shell transformer in the last paragraph, we will determine the sum of the leakage coefficients and the regulation for different kinds of load of the core transformer considered above, supposing it to be wound (a) in three layers, one primary and two secondary or vice versa; (b) in five layers, two primary and three secondary or vice versa.

From § 54,
\[
x_{1}+x_{2}=l_{i j}^{1} \frac{\lambda^{2}}{3 \mu \lambda^{\prime 2}} \frac{z \mathrm{I}}{\mathrm{QK}},
\]
and \(\lambda=4\left(b+b^{\prime}+2 \beta\right), \lambda^{\prime}=4 b^{\prime}\), so that, using the same values for the constants as before, we find,
for (a) \(x_{1}+x_{2}=.000381\),
(b) \(x_{1}+x_{2}=.000127\),
from which, proceeding as in \(\$ 52\), we find for the regulation
\begin{tabular}{c|c|c}
\hline & \multicolumn{2}{|c}{ Drop per cent. } \\
Power Factor. & \begin{tabular}{c}
\((\) (a) \\
Three layers.
\end{tabular} & \begin{tabular}{c}
(b) \\
Five layers.
\end{tabular} \\
\cline { 2 - 3 } & 1.0 & 1.49 \\
.8 & 2.43 & 1.47 \\
.6 & 2.55 & 1.58 \\
\hline
\end{tabular}
58. It is obvious that in core transformers of the ring type in which the winding is continuous all round, the maximum efficiency shape will, other things being equal, be that in which the magnetic circuit is shortest, that is when the opening in the laminae is filled with the copper circuits. The ring type is not suitable for practical construction, but a near approach to it is the Burnand transformer,* in which the magnetic circuit is formed of square laminae from which a symmetrically placed inner square has been removed to give the winding space. Each side of the square is built and wound separately with triangular
shaped windings, and the four sides jointed together to form the completed transformer.

Let us determine the proportions of such a transformer so that \(\tau\), and hence the efficiency, shall be a maximum.

Let \(2 b, 2 b\), be the square opening in the laminae, \(\lrcorner \beta, 2 \beta^{\prime}\) the cross section of the magnetic circuit, \(\because \beta\) being measured in the planes of the laminae, then,
\[
\begin{aligned}
& a=4 b^{2}, \quad l=4\left(\beta+\beta^{\prime}+\frac{2}{3} b\right) \\
& a=4 \beta \beta^{\prime}, \quad \lambda=8(b+\beta)
\end{aligned}
\]

Proceeding as in \(\S 56\) we find, in order that
\(\frac{\lambda}{a}\) and \(\frac{l}{a}\) shall be minima
when \(a \alpha\) is constant,
that \(\quad 2 \beta\left(\beta^{\prime}-2 \beta\right)=b\left(3 \beta-\beta^{\prime}\right)\)
and if \(\beta^{\prime}=\eta \beta, \quad \beta=u b\) as before,
\[
u=\frac{1}{2} \frac{3-\eta}{\eta-\frac{2}{2}}, \quad \eta=\frac{4 u+3}{2 u+1},
\]
and the equation of the losses
\[
\frac{a l}{a \lambda}=z \frac{p \mathrm{I}}{\mathrm{QK}}
\]
becomes
\[
\frac{18 u^{2}+16 u+2}{6 u^{2}\left(4 u^{2}+7 u+3\right)}=z \frac{p \mathrm{~T}}{\mathrm{QK}},
\]
from which, for any given values of \(z, p, Q, I\) and \(K, u\) can be found and hence \(\eta\).

The equation of the output,
\(b^{4} l^{2} \eta=\frac{\mathrm{P}_{2}}{4 p Q c_{2} \gamma v^{2}}\),
gives \(b\), which with \(u\) and \(\eta\), determine the transformer.
For example, if we take as before
\[
z \frac{\not \mathrm{I}}{\mathrm{QK}}=1.029, \quad \mathrm{P}_{2}=12.5 \mathrm{~K} . \mathrm{W} .
\]
we find
\[
u=.57 \pi, \quad \eta=2.464,
\]
\[
b=7.8, \quad \beta=4.5, \quad \beta^{\prime}=11.09
\]
and the value of \(\tau\) is 7680 , which is considerably larger and hence better than for either of the two preceding types.

Iron loss \(=\) copper loss \(=176.7\) watts.
Efficiency \(=97.26\) per cent.

These transformers are wound in five or seven layers and their regulation is of a very high order. The formula in \(\S 54\) would only enable us to obtain a very rough approximation to \(x_{1}+x_{2}\) for this type.

\section*{General Solution of the Transformer Problem by a Vector Method.}

\section*{Explanatory.}
59. (a) If \(\alpha\) be any vector representing e.m.f., current, or flux, on the plane alternate current diagram (Fig. 2) and if we understand by
\(\iota\)
the vector got by rotating \(a\) through a right angle in the positive direction, and hence if we understand by

\section*{\((\operatorname{Cos} \theta+\iota \operatorname{Sin} \theta) a\) or \(e^{\iota} \theta_{a}\)}
the vector got by rotating \(\alpha\) through the angle \(\theta\) in the positive direction, then it is well-known that operators such as \(e^{\iota \theta}\) can be manipulated as ordinary algebraic symbols, and that \(\iota\) can be treated as if it were the algebraic imaginary \(\sqrt{-1}\). \({ }^{*}\)
(b) If \(a_{1}, a_{2}, a_{3}\) etc., be numerical multipliers, then the vector \(\left\{a_{1} e^{\ell \theta_{1}}+a_{2} e^{\ell} \theta_{2}+a_{3} e^{\ell \theta_{2}}+\right\} \alpha\), or the resultant or sum of the vectors
\[
a_{1} e^{\iota \theta_{1} \alpha}, a_{2} e^{\ell \theta_{2}} \alpha, a_{3} e^{\ell \theta_{3}} \alpha, \text { etc. }
\]
\[
\text { is }=\{\Sigma a \operatorname{Cos} \theta+\iota \Sigma a \operatorname{Sin} \theta\} a
\]
\[
=\mathrm{A}(\operatorname{Cos} \psi+\operatorname{Sin} \psi) \alpha=\mathrm{A} e^{\ell} \psi_{\alpha}
\]
where
\[
\begin{aligned}
\mathrm{A}^{2} & =(\Sigma a \operatorname{Cos} \theta)^{2}+(\Sigma a \operatorname{Sin} \theta)^{2} \\
& =\Sigma a^{2}+2 \Sigma a_{1} a_{2} \operatorname{Cos}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
\]
and
\[
\tan \psi=\frac{\sum_{i} \operatorname{Sin} \theta}{\Sigma_{a} \operatorname{Cos} \theta}
\]
hence the operator
\[
a_{1} e^{\iota \theta_{1}}+a_{2} e^{\ell \theta_{2}}+a_{3} e^{\ell \theta_{3}}+\text { etc. }=\mathbf{A} e^{\iota \psi}
\]
where A and \(\psi\) are given by the above equations.

\footnotetext{
* Lyle. Alternate Current Problems. "Electrician," 41, pp. 816-818; 42, pp. 72.74 and 148-151, 1898.
}
(c) If \(\alpha\) represent the harmonically varying quantity \(n\) Coszet, then since
\[
\frac{d}{d t}(n \operatorname{Cos} z t)=z v n \operatorname{Cos}\left(z v t+\frac{\pi}{2}\right)
\]
\(\overbrace{}^{\frac{\pi}{2}}\) a or w\(w a\) will represent \(\frac{d}{d t}(n \operatorname{Cosze} t)\), and we may write
\(\frac{d}{d t} \alpha=2 e^{i \frac{\pi}{2}}{ }_{\alpha}=\) zel \(\alpha\).
60. If \(\sigma / 4 \pi\) be the permeance of the magnetic circuit, closed or open, and limited in section by the iron core where the latter exists ; and if \(\delta\) be the angle of magnetic lag of the iron, then as the flux density remains very nearly constant throughout the range of operation of a transformer, we may without much error consider \(\sigma\) and \(\delta\) as constants.

The total number \(N_{1}\) of magnetic lines looped on the \(n_{1}\) turns of the primary coil is the sum of three sets, namely,
1. Those traversing the iron core, produced by the magnetising ampere turns \(n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}\), and behind them in phase by the angle \(\delta\).

Hence these
\[
=\sigma e^{-\delta \delta}\left(n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}\right)
\]
2. Those produced by \(\overline{\mathrm{C}}_{1}\) and in phase with it that miss the iron core.

Let these
\(=x_{11} \sigma n_{1} \overline{\mathrm{C}}_{1}\).
3. Those produced by \({\overline{\mathrm{C}_{2}}}^{2}\) and in phase with it that miss the iron core.

Let these
\[
=x_{21} \sigma n_{2} \overline{\mathrm{C}}_{2 \cdot}
\]

Hence
\[
\mathrm{N}_{1}=n_{1} \sigma\left(e^{-\iota \delta}+x_{11}\right) \overline{\mathrm{C}}_{1}+n_{2} \sigma\left(e^{-\ell \delta}+x_{21}\right) \overline{\mathrm{C}}_{2}
\]
similarly
\[
\mathrm{N}_{2}=n_{1} \sigma\left(e^{\ell \delta}+x_{12}\right) \overline{\mathrm{C}}_{1}+n_{2} \sigma\left(e^{-\delta \delta}+x_{22}\right) \overline{\mathrm{C}}_{2}
\]
where \(x_{22}\) and \(x_{12}\) have similar significations with regard to the secondary coil that \(x_{11}\) and \(x_{21}\) have with regard to the primary.

We thus have four leakage coefficients and it will be noticed that they are connected with the two coefficients \(x_{1}\) and \(x_{2}\) hitherto used by the equations
\[
\begin{aligned}
& x_{1}=x_{11}-x_{21} \\
& x_{2}=x_{22}-x_{12}
\end{aligned} \text { (see § 43). }
\]
61. The equations of motion are
\[
\begin{align*}
& \overline{\mathrm{E}}_{1}=r_{1} \overline{\mathrm{C}}_{1}+n_{1} \frac{d}{d t} \overline{\mathrm{~N}}_{1}=r_{1} \overline{\mathrm{C}}_{1}+\tau n_{1} e^{\iota^{\pi}}=\overline{\mathrm{N}}_{1} \tag{I.}\\
& \overline{\mathrm{E}}_{2}=-r_{2} \overline{\mathrm{C}}_{2}-n_{2} \frac{d}{d t} \overline{\mathrm{~N}}_{2}=-r_{2} \overline{\mathrm{C}}_{2}-\tau v n_{2} e^{\iota^{\frac{\pi}{2}}} \overline{\mathrm{~N}}_{2} \tag{II.}
\end{align*}
\]
where \(\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}\), are the terminal e.m.f's, and \(r_{1}, r_{2}\), the internal resistances of the coils.

If R be the external resistance or its equivalent in the secondary circuit, and \(\operatorname{Cos} \phi\) the power-factor of the load,
\[
\begin{equation*}
\overline{\mathrm{E}}_{2} \operatorname{Cos} \phi=\operatorname{Re}{ }^{\prime \phi} \overline{\mathrm{C}}_{2} \tag{III.}
\end{equation*}
\]

Eliminating \(\mathrm{E}_{2}\) between equations (II.) and (III.) and putting
\[
\begin{aligned}
& \frac{z n_{1}^{2} \sigma}{r_{1}}=\tau_{1} \quad \frac{z n_{2}^{2} \sigma}{r_{2}}=\tau_{2} \\
& \frac{z n_{2}{ }^{2} \sigma}{\mathrm{R}} \operatorname{Cos} \phi=\theta
\end{aligned}
\]
[Note that the \(\theta\) here is the same as the \(\theta \operatorname{Cos} \phi\) in the early part of this paper.]
we get
\[
\begin{equation*}
\left.\left(1+x_{12} e^{\iota \delta}\right) n_{1} \overline{\mathrm{C}}_{1}=-\left(1+x_{22} e^{\iota \delta}+\frac{1}{\tau_{2}} e^{-\iota\left(\frac{\pi}{2}-\delta\right)}+\frac{1}{\theta} e^{-\iota} \frac{\pi}{2}-\delta-\phi\right)\right) n_{2} \mathrm{C}_{2} \tag{IV.}
\end{equation*}
\]
from which by \(\S 59, b\), we find that
\[
\begin{equation*}
\frac{n_{1} \mathrm{C}_{1}}{\Delta}=\frac{n_{2} \mathrm{C}_{2}}{\theta \mathrm{X}_{12}} \tag{V.}
\end{equation*}
\]
where
\[
\begin{aligned}
\begin{aligned}
& \Delta^{2}=\theta^{2}\left(1+2 x_{22} \operatorname{Cos} \delta\right.\left.+2 \frac{\operatorname{Sin} \delta}{\tau_{2}}+x_{22}{ }^{2}+\frac{1}{\tau_{2}^{2}}\right) \\
&+2 \theta\left\{\operatorname{Sin}(\delta+\phi)+x_{22} \operatorname{Sin} \phi+\frac{\dot{\operatorname{Cos} \phi}}{\tau_{2}}\right\}+1, \\
& \mathrm{X}_{12}{ }^{2}=1+2 x_{12} \operatorname{Cos} \delta+x_{12}^{2}
\end{aligned}
\end{aligned}
\]
and that
\(\tan \beta=\frac{\operatorname{Cos}(\delta+\phi)+x_{12} \operatorname{Cos} \phi+\theta\left\{\left(x_{12}-x_{22}\right) \operatorname{Sin} \delta+\frac{\operatorname{Cos} \delta}{\tau_{2}}+\frac{x_{12}}{\tau_{2}}\right\}}{\operatorname{Sin}(\delta+\phi)+x_{12} \operatorname{Sin} \phi+\theta\left\{1+\left(x_{12}+x_{22}\right) \operatorname{Cos} \delta+\frac{\operatorname{Sin} \delta}{\tau_{2}}+x_{12} x_{22}\right\}}\)
where \(\pi-\beta\) is the angle that \(\overline{\mathrm{C}_{2}}\) is behind \(\overline{\mathrm{C}_{1}}\) in phase.
62. Eliminating \(\overline{\mathrm{C}_{2}}\) from equations (I.) and (IV.) and putting
\[
\begin{aligned}
& x_{11}-x_{21}+x_{22}-x_{12}=\mathrm{X}, \\
& \frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}=\mathrm{T}, \\
& x_{11} x_{22}-x_{12} x_{21}-\frac{1}{\tau_{1} \tau_{2}}=m, \\
& \frac{x_{11}}{\tau_{2}}+\frac{x_{22}}{\tau_{1}}=n,
\end{aligned}
\]
we get
\[
\begin{aligned}
\frac{n_{1} \overline{\mathrm{E}}_{1}}{r_{1} \tau_{1}}= & \frac{e^{\iota(\phi-\delta)}+x_{11} e^{\iota \phi}+\frac{1}{\tau_{1}} e^{-\iota\left(\frac{\pi}{2}-\phi\right)}}{e^{-\iota\left(\frac{\pi}{2}-\phi\right)}+\theta\left\{e^{-\iota \delta}+x_{22}+\frac{1}{\tau_{2}} e^{-\iota} \frac{\pi}{2}\right\}} n_{1} \overline{\mathrm{C}}_{1} \\
& +\frac{\theta\left\{\mathrm{X} e^{\iota\left(\frac{\pi}{2}-\delta\right)}+\mathrm{T} e^{-\iota \delta}+m e^{\iota} \frac{\pi}{2}+n\right\}}{e^{-\iota\left(\frac{\pi}{2}-\phi\right)}+\theta\left\{e^{-\delta \delta}+x_{22}+\frac{1}{\tau_{2}} e^{-i \frac{\pi}{2}}\right\}} n_{1} \overline{\mathrm{C}_{1}}
\end{aligned}
\]
from which by \(\S 59, b\), we find that
\[
\begin{equation*}
\frac{n_{1} \mathrm{C}_{1}}{\Delta}=\frac{n_{1} \mathrm{E}_{1}}{r_{1} \tau_{1}} \cdot \frac{1}{\mathrm{D}} \tag{VI.}
\end{equation*}
\]
where
\[
\begin{aligned}
\mathrm{D}^{2} & =1+2 x_{11} \operatorname{Cos} \delta+2 \frac{\operatorname{Sin} \delta}{\tau_{1}}+x_{11}^{2}+\frac{1}{\tau_{1}{ }^{2}}+2 \theta\{\mathrm{X} \operatorname{Sin} \phi+\mathrm{T} \operatorname{Cos} \phi \\
& +\left(x_{11} \mathrm{X}+\frac{\mathrm{T}}{\tau_{1}}\right) \operatorname{Sin}(\delta+\phi)+\left(x_{11} \mathrm{~T}-\frac{\mathrm{X}}{\tau_{1}}\right) \operatorname{Cos}(\delta+\phi)+n \operatorname{Cos}(\delta-\phi) \\
& \left.-m \operatorname{Sin}(\delta-\phi)+\left(x_{11} m+\frac{n}{\tau_{1}}\right) \operatorname{Sin} \phi+\left(x_{11} n-\frac{m}{\tau_{1}}\right) \operatorname{Cos} \phi\right\} \\
& +\theta^{2}\left\{\mathrm{X}^{2}+\mathrm{T}^{2}+m^{2}+n^{2}\right\}
\end{aligned}
\]
also, if \(\alpha\) be the angle that \(\overline{\mathrm{C}_{1}}\) is behind \(\overline{\mathrm{E}}_{1}\) in phase, so that \(\operatorname{Cos} \alpha\) is the power factor of the transformer,
\(\mathrm{D} \triangle \operatorname{Cos} \alpha=\operatorname{Sin} \delta+\frac{1}{\tau_{1}}+\theta\left\{\operatorname{Cos} \phi+\frac{2 \operatorname{Sin}(\delta+\phi)}{\tau_{1}}+\left(x_{12}+x_{21}\right) \operatorname{Cos}(\delta+\phi)\right.\)
\[
\begin{aligned}
& \left.+2\left(x_{22} \operatorname{Sin} \phi+\frac{\operatorname{Cos} \phi}{\tau_{2}}\right) \operatorname{Sin} \delta+2 \frac{x_{22}}{\tau_{1}} \operatorname{Sin} \phi+\left(x_{12} x_{21}+\frac{2}{\tau_{1} \tau_{2}}\right) \operatorname{Cos} \phi\right\} \\
& +\theta^{2}\left\{\mathrm{~T}+\left[\left(x_{22}-x_{12}\right)\left(x_{22}-x_{21}\right)+\frac{2}{\tau_{1} \tau_{2}}+\frac{1}{\tau_{2}{ }^{2}}\right] \operatorname{Sin} \delta+\right. \\
& \left.\left[\frac{x_{22}}{\tau_{1}}+\frac{x_{21}+x_{12}}{\tau_{2}}\right] \operatorname{Cos} \delta+\frac{x_{22}^{2}}{\tau_{2}}+\frac{1}{\tau_{1} \tau_{2}{ }^{2}}+\frac{x_{12} x_{21}}{\tau_{2}}\right\}= \\
& \mathrm{Q}=q_{0}+q_{1} \theta+q_{2} \theta^{2} \text { (say). } \quad \text { (VII.) }
\end{aligned}
\]

The power \(P_{1}\) taken in by the transformer on the primary side being
\[
=\frac{1}{2} \mathrm{E}_{1} \mathrm{C}_{1} \operatorname{Cos} \alpha
\]
we find
\[
\begin{equation*}
\mathrm{P}=\frac{{ }_{2}^{2}}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1}} \quad \frac{\mathrm{Q}}{\mathrm{D}^{2}} . \tag{VIII.}
\end{equation*}
\]
63. From equations (V.) and (VI.) we get
\[
\begin{align*}
& n_{2} \mathrm{C}_{2}=\frac{n_{1} \mathrm{E}_{1}}{r_{1} \mathrm{X}_{12}} \frac{1}{r_{1} \tau_{1}} \frac{\mathrm{D}}{} \tag{IX.}
\end{align*}
\]
and as \(\mathrm{F}_{2} \operatorname{Cos} \phi=\mathrm{RC}_{2}\) and \(\theta=\frac{z u n_{2}{ }^{2} \sigma}{\mathrm{R}} \operatorname{Cos} \phi\),
we find that
\[
\begin{equation*}
\mathrm{E}_{2}=\frac{n_{2}}{n_{1}} \frac{\mathrm{X}_{12}}{\mathrm{D}} \mathrm{E}_{1} . \tag{X.}
\end{equation*}
\]

As the output \(\mathrm{P}_{2}=\frac{1}{2} \mathrm{E}_{2} \mathrm{C}_{2} \operatorname{Cos} \phi\) we find that, substituting for \(\mathrm{E}_{2}\) and \(\mathrm{C}_{2}\), that
\[
\begin{equation*}
\mathrm{P}_{2}=\frac{1}{2} \frac{\mathrm{E}_{1}{ }^{2}}{r_{1} \tau_{1}} \frac{\mathrm{X}_{12}{ }^{2}}{\mathrm{D}^{2}} \theta \operatorname{Cos} \phi . \tag{XI.}
\end{equation*}
\]
64. Equation (IV.) of \(\$ 61\) can be written in the form,
\[
\begin{array}{r}
\left.\left(1+x_{12} e^{\ell \delta}\right) \overline{\left(n_{1} \mathrm{C}_{1}+n_{2} \mathrm{C}_{2}\right.}\right)=-\left\{\left(x_{2!}-x_{12}\right) e^{\iota \delta}+\frac{1}{\tau_{2}} e^{-\iota\left(\frac{\pi}{2}-\delta\right)}+\right. \\
\left.\frac{1}{\theta} e^{-\iota\left(\frac{\pi}{2}-\delta-\phi\right)}\right\} n_{2} \overline{\mathrm{C}}_{2}
\end{array}
\]
but \(\overline{n_{1}} \overline{\mathrm{C}_{1}+n_{2} \mathrm{C}_{2}}=\overline{\mathrm{F} / \sigma}\),
and, by \(\S 59, b\), we find that
\[
\begin{equation*}
\frac{\mathrm{F} / \sigma}{\mathrm{M}}=\frac{n_{2} \mathrm{C}_{2}}{\theta \mathrm{X}_{12}} \tag{XII.}
\end{equation*}
\]

74 Proceedings of the Royal Society of Victoria.
where
\[
\begin{aligned}
& \quad \mathrm{M}^{2}=1+2 \theta\left\{\left(x_{22}-r_{12}\right) \operatorname{Sin} \phi+\frac{1}{\tau_{2}} \operatorname{Cos} \phi\right\}+\theta^{2}\left\{\left(x_{22}-x_{12}\right)^{2}+\frac{1}{\tau_{2}^{2}}\right\} \\
& \text { and } \mathrm{X}_{12}^{2}=1+2 x_{12} \operatorname{Cos} \delta+x_{12}^{2} \text { (as before). }
\end{aligned}
\]

Combining equations (XII.) and (IX.), we have
\[
\begin{equation*}
\frac{\mathrm{F}}{\sigma \mathrm{M}}=\frac{n_{1} \mathrm{E}_{1}}{r_{1} \tau_{1}} \frac{1}{\mathrm{D}} \tag{XIII.}
\end{equation*}
\]
and as the iron loss (see §§ 14),
\[
\mathrm{H}_{3}=\frac{1}{2} \tau \frac{\mathrm{~F}^{2}}{\sigma} \operatorname{Sin} \delta,
\]
we find by means of equation (XIII.), that
\[
\mathrm{H}_{3}=\frac{1}{2} \frac{\mathrm{E}_{1}^{2}}{r_{1} \tau_{1}} \quad \frac{\mathrm{~N}}{}{ }^{2}{ }^{2} \operatorname{Sin} \delta .
\]
65. The primary copper loss \(\mathrm{H}_{1}\) being
\[
=\frac{1}{2} r_{1} \mathrm{C}_{1}{ }^{2}
\]
we find by equation (VI.), \(\$ 62\), that
\[
\mathrm{H}_{1}=\frac{1}{2} \frac{\mathrm{E}_{1}{ }^{2}}{r_{1} \tau_{1}{ }^{2}} \frac{\Delta^{2}}{\mathrm{D}^{2}},
\]
and the secondary copper loss \(\mathrm{H}_{2}\) being
\[
=\frac{1}{2} r_{2} \mathrm{C}_{2}{ }^{2} \text {; }
\]
also we find by equation (IX.), § 63, that
\[
\mathrm{H}_{2}=\frac{1}{2} \frac{\mathrm{E}_{1}{ }^{2}}{r_{1} \tau_{2}} \frac{\theta^{2} X_{12}^{2}}{\mathrm{D}^{2}} .
\]
66. The efficiency
\[
\begin{aligned}
\eta & =\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{X_{12}^{0} \theta \operatorname{Cos} \phi}{Q} \\
& =\mathrm{X}_{12}^{2} \operatorname{Cos} \phi \frac{\theta}{q_{0}+q_{1} \theta+q_{2} \theta^{2}} \quad(\text { see sss } 62,63),
\end{aligned}
\]
is a maximum when
\[
\theta^{2}=\frac{q_{0}}{q_{2}} \quad(\operatorname{see} \S 15),
\]
and its maximum value is
\[
\frac{\mathrm{X}_{12}{ }^{2} \operatorname{Cos} \phi}{q_{1}+2, ~,^{\prime} q_{02}} .
\]
67. Thus, without making any assumptions as regards leakage, all the important variables in the general theory of the trans-```

